
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 10, Issue 2, March – April 2021 ISSN 2278-6856

Volume 10, Issue 2, March - April 2021 Page 1

Abstract : SQL Injection Attack causes a very serious security
issue over web applications or websites. In this attack, Attacker
is able to take benefit of poorly coded Web application software
to put malicious or unwanted code into the organization's
systems and network. The vulnerability exists within web
application when a Web application does not provide proper
validation or filtering for the input data entered by the user in
the Input fields. In today’s world there are large numbers of web
application which are having many input fields where Hacker
can get chance to attack as a SQL Injection (E.g. To dump the
database contents to the attacker). So Attacker can access the
confidential data of the organization. We are going to present a
project of SQL Injection attack, detection and prevention
techniques in this web form project .we have two pages one is
vulnerable and second one is secure It Targets the back end data
stores through web application inputs like forms, URLs etc.
Keywords- Tautology, Injection attack, vulnerability,
prevention.

1 INTRODUCTION
The Internet has brought about many changes in the way
organizations and individuals conduct business, and it
would be difficult to operate effectively without the added
efficiency and communications brought about by the
internet. In the last few years, the popularity of web-based
applications has grown tremendously.
A number of factors have led an increasing number of
organizations and individuals to rely on web-based
applications to provide access to a variety of services.
Today, web-based applications are routinely used in
security critical environments, such as medical, financial,
and military systems.
Because of the popularity of these types of
applications many techniques to exploit their security
vulnerabilities are potentially quite dangerous. One
such technique is called SQL injection.

SQL Injection attack has been one of the major
threats to the security of web applications and
attackers can trick server into executing malicious
SQL code which is occurs when user input is parsed
as SQL tokens, thus changing the semantics of the
underlying query. SQL injection attacks have been
used to extract customer and order information from
e-commerce databases or bypass security
mechanisms. The intuition behind such attacks is that
predefined logical expressions within a predefined

query can be altered simply by injecting operations
that always result in true or false statements.

This paper, presents a runtime technique to prevent
SQL injection observe that all SQL injections alter the
structure of the query intended by the programmer
and by capturing this structure at runtime, we can
compare it to the parsed structure after inserting user-
sup plied input, and evaluate similarity . Evaluated the
proposed system based on user input on a set of real-
world applications without requiring a call to the
database, thus lowering runtime costs and satisfy the
following three criteria:

1.1 Prevent the possibility of the attack.
1.2 Minimize the effort required by the programmer.
1.3 Minimize the runtime overhead.

2 Related Work
SQL Injection Attack causes a very serious security issue
over web applications or websites. In this attack, Attacker
is able to take benefit of poorly coded Web application
software to put malicious or unwanted code into the
organization's systems and network. The vulnerability
exists within web application when a Web application does
not provide proper validation or filtering for the input data
entered by the user in the Input fields. In today’s world
there are large numbers of web application which are
having many input fields where Hacker can get chance to
attack as a SQL Injection (E.g. to dump the database
contents to the attacker. So Attacker can access the
confidential data of the organization. We are going to
make a project of SQL Injection attack, detection and
prevention techniques in this paper .It Targets the back end
data stores through web application inputs like forms,
URLs etc.

Now a day’s most web applications are being hacked using
SQL Injection attacks method. This comes under top ten
security threat in web applications. SQL Injection Attack is
most serious attack because it is categorized Under Open
Web Application Security Project(OWASP) Top 10 Attack
with high risk, Fix ability as medium having the impact on
server as data loss or corruption of DB, lack of
responsibility or denial of access to DB. It can sometimes
lead to the complete host take over. SQL Injection Attack is

Preventing Web Database from SQL Injection
Attacks

Mr. Omkar Singh1, Dr. S. K. Singh2, Mr. Haroon Khan3

 1 Thakur College of Science and Commerce, Thakur Village, Kandivali – E, Mumbai – 400101

 2 Thakur College of Science and Commerce, Thakur Village, Kandivali – E, Mumbai – 400101

 3 Thakur College of Science and Commerce, Thakur Village, Kandivali – E, Mumbai – 400101

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 10, Issue 2, March – April 2021 ISSN 2278-6856

Volume 10, Issue 2, March - April 2021 Page 2

most effective method for accessing the data from DB
(Backend), with the help of this attack attacker can reach to
the database and lift or steal sensitive information. The
cause of SQL Injection is Malicious User input being
treated as real DB Query. Commonly this attack is
generated from web input so we can say it also an input
validation attacks. With the help of this attack Hacker can
get table details, database schema, and also Hacker can
employ DML statement from the supplied input filed to
web application to the database server which resulting a
corrupt/ modified database.

SQL Injection has become a common issue with
database driven web application. The attack is easily
detected, and exploited, and as such, any site or
software package with even a minimal user base is
likely to be subject to an attempted attack of this kind.
Essentially, the attack is carried out by placing a Meta
character into data input fields to then place SQL
commands in the control plane, which does not exist
there before. SQL injection attacks allow hacker to
spoof identity of system, make the changes within
existing data, which causes repudiation issues such as
changing balances or tampering to transaction, allow
the complete disclosure of all data on the system,
delete the data or make it otherwise unavailable, and
become administrators of the database tier. SQL
Injection is very common with various kinds of
languages like PHP and ASP.

Applications due to the prevalence of older functional
interfaces. Due to the interfaces available in the
JAVA and .NET applications are less vulnerable to
have easily exploited SQL injections. Depending up
the attacker’s skill and imagination, such as low
privilege connections to the Database server and so
on, the severity of SQL Injection attacks is limited.

We reviewed a number of electronic journal articles
from IEEE journals and from ACM, and gathered
some information from web sites to gain sufficient
knowledge about SQL injection attacks. Following
are the papers from which we covered different
important strategies to prevent SQL injection attacks.

2.1 From “Using Parse Tree Validation to Prevent
SQL Injection Attacks” ACM, I covered the
techniques for sqlinjection discovery. This paper also
covered very well the SQL parse tree validation that
we mentioned in report (Gregory T. Buehrer Bruce
W. Weide, and Paolo A. G. Sivilotti, 2005).

2.2 From “The Essence of Command Injection
Attacks in Web Applications” ACM, they covered the
techniques to check and sanitize input query using
SQLCHECK, it use the augmented queries and
SQLCHECK grammar to validate query. (Zhendong
Su and Gary Wassermann, 2006).

2.3 From “Using Automated Fix Generation to Secure
SQL Statements” IEEE CNF, they covered brief
background, SQL statement, and vulnerability
replacement methods (Stephen Thomas and Laurie
Williams, 2007).

2.4 From “Automated Protection of PHP Applications
against SQL-injection Attacks” they covered an
original method to protect application automatically
from SQL Injection attacks. The original approach
combines static analysis, dynamic analysis, and
automatic code re-engineering to secure existing
properties (Ettore Merlo, Dominic Letarte, Giuliano
Antoniol, 2007).

2.5 From “Preventing SQL Injection Attacks in
Stored Procedures”, they also provided a Novel
approach to shield the stored procedures from attack
and detect SQL injection from sit (Ke Wei, M.
Muthuprasanna, Suraj Kothari, 2007). This method
combines runtime check with static application code
analysis so that they can eliminate vulnerability to
attack. The key behind this attack is that it alters
the structure of the original SQL statement and
identifies the SQL injection attack. The method is
divided in two phases, one is offline and another one
is runtime. In the offline phase, stored procedures use
a parser to pre- process and detect SQL statements
in the execution call for runtime analysis. In the
runtime phase, the technique controlled all runtime
generated SQL Queries related with the user input
and check these with the original structure of the SQL
statement after getting input from the user. Once this
technique detects the malicious SQL statements it
prevents the access of these statements to the database
and provides details about attack.

3 Methodology
3.1 Tautologies:
Tautology-based attack is to inject code in one or
more conditional statements so that they always
evaluate to true. The most common usages of this
technique are to bypass authentication pages and
extract data. If the attack is successful when the code

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 10, Issue 2, March – April 2021 ISSN 2278-6856

Volume 10, Issue 2, March - April 2021 Page 3

either displays all of the returned records or performs
some action if at least one record is returned.
Example: In this example attack, an attacker submits

Enter haroon as username
Enter xxx') OR 1 = 1 --] as password

3.2 Union Query:
In union-query attacks, Attackers do this by injecting a
statement of the form: UNION SELECT <rest of injected
query> because the attackers completely control the
second/injected query they can use that query to retrieve
information from a specified table. The result of this attack
is that the database returns a dataset that is the union of the
results of the original first query and the results of the
injected second query.
Example: Inject this Query

 1' order by 7-- -
 1' union select 1,2,3,4,5,6,7-- -
 1'union select 1,@@version,3,4,5,6,7-- -
 1' union select 1,table_name,3,4,5,6,7 from

information_schema.tables-- -
 1'union select 1,column_name,3,4,5,6,7 from

information_schema.columns where
table_name="users"-- -

 1' union select 1,column_name,3,4,5,6,7 from
information_schema.columns where
table_name=char(117,115,101,114,115)-- -

 1' union select 1,password,3,4,5,6,7 from users-- -

3.4 Proposed Solution
A web application is vulnerable to an SQL injection
attack if an attacker is able to insert SQL statements
into an existing SQL query of the application. This is
usually achieved by injecting malicious input into
user fields that are used to compose the query, login
page prompts the user to enter her username and
password into a form typically used for checking the
user login credentials therefore, are prime targets for
an attacker. In this example, if the login application
does not perform correct input validation of the form
fields, the attacker can inject strings into the query
that alter its semantics. For example, consider an
hacker entering “OR 1=1”-- one of sql injection string
as in the tabel(1), the “--” command indicates a
comment in Transact-SQL. Hence, everything after
the first “--” is ignored by the SQL database engine
with the help of the first quote in the input string, the
user name string is closed, while the “OR 1=1” adds a
clause to the query which evaluates to true for every
row in the table. When executing this query, the
database returns all user rows, which applications
often interpret as a valid login. So in the proposed
system all client-supplied data needs to be cleansed of
any characters or strings that could possibly be used
maliciously as shown in the figure(1).

In this section list proposed methods can be applied to
minimize the risk of a SQL injection attack

3.5 Using escape string
Developers usually use php function
mysql_real_escape_string to filter input data. As of PHP
5.5.0 mysql_real_escape_string and the mysql extension
are deprecated. So we shall use mysqli extension and
mysqli::escape_string function instead. Where the
unnecessary extra characters are removed and then passed
to the execution.

3.6 Using prepared statements
When prepared statements and parameterized queries
are used, these SQL statements that are sent to and
parsed by the database server separately from any
parameters. In this way it is impossible for an attacker
to inject malicious SQL.

3.7 Validation Input
The first step in any form processing script should check
the syntax of input for validity to verify that the input is a
valid input in the language. The validation could be
anything such as checking whether the entered value for
“password" is a number, and is 16 or over, or making sure
the username column has only valid characters such as A to
Z, a to z and many classes of input have fixed languages
such Email addresses, dates etc.

3.8 Limit the Length of User Input
Make use of the maxlength attribute of the textbox
controls will be restricting the number of characters
the hacker can type. In proposed system all text boxes
and form fields should be always as short as possible
for example, if the firstname textbox should only
accept 40 characters, then enforce the length in the
maxLength attribute. This will restrict the hacker to
send small set of commands back to the server
<input type="text" id="txtFirstname" MaxLength="40"
runat="server "/>

3.9 Error messages
These should not reveal sensitive information and
where exactly an error occurred. Simple custom error
messages such as “Sorry, we are experiencing
technical errors. The technical team has been
contacted. Please try again later” can be used instead
of display the SQL statements that caused the error.

3.10 Password encryption
SQL Server automatically encrypts the passwords that you
assign to logins and application roles. Even if you look
directly into the system tables in the master database, you
won't find actual passwords. You don't need to do anything
to enable this feature; in fact, you can't disable it.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 10, Issue 2, March – April 2021 ISSN 2278-6856

Volume 10, Issue 2, March - April 2021 Page 4

3.11 Result and Discussion
Suppose user supplies admin and 1234 as the
password. The statement to be executed against the
database would be

SELECT * FROM users WHERE email = 'admin'
AND password = md5('1234');

The above code can be exploited by commenting out
the password part and appending a condition that will
always be true. Let’s suppose an attacker provides the
following input in the email address field.

admin' OR 1 = 1 LIMIT 1 -- ']

Xxx for the password.

The generated dynamic statement will be as follows.

SELECT * FROM users WHERE email = 'admin' OR
1 = 1 LIMIT 1 -- '] AND password = md5('1234');

Here,
xxx@xxx.xxx ends with a single quote which
completes the string quote

OR 1 = 1 LIMIT 1 is a condition that will always be
true and limits the returned results to only one record.

-- ' AND … is a SQL comment that eliminates the
password part.

We have a login page that is vulnerable to SQL
Injection attacks. The php form code above is taken
from the login page. The application provides basic
security such as sanitizing the username field. This
means our above code cannot be used to bypass the
login.
To get round that, we can instead exploit the password
field. The diagram below shows the steps that you must
follow
Let’s suppose an attacker provides the following input

Step 1: Enter haroon as username

Step 2: Enter xxx') OR 1 = 1 --] S

tep 3: click on sign in button

Step 4: you will directed to the welcome page

4. Conclusion

Web applications have become an essential and integral
part of internet usage today as they provide the
convenience of business and personal transactions
anywhere anytime. However, SQLIAs pose a serious threat
to web applications hence; the primary purpose of this
project was to present a new model to protect and detect
web applications against SQLIAs with least modification
of the Web architecture. Our proposed model was
developed based on negative tainting and SQL syntax-
aware methods, and was evaluated through SQL
penetration testing in web application and database server.
The negative tainting and SQL syntax-aware that we use
gives our technique several significant advantages over
techniques based on other mechanisms.
Evaluations have been performed using three different
applications. We were able to successfully distinguish
between legitimate SQL queries and malicious ones that
had adopted various evasion methods such as encoding,
comments and white space evasion methods as well as
logical expressions and string techniques that were not
captured by commercially available detection engines.

REFERENCES
[1] Atefeh Tajpour ,Suhaimi Ibrahim, Mohammad

Sharifi“Web Application Security by SQL Injection
DetectionTools”, IJCSI International Journal of
ComputerScience Issues, Vol. 9, Issue 2, No 3, March
2012.

[2] Mayank Namdev, Fehreen Hasan, Gaurav
Shrivastav”Review of SQL Injection Attack and
Proposed Methodfor Detection and Prevention of
SQLIA”, InternationalJournal of Advanced Research
in Computer Scienceand Software Engineering,
Volume 2, Issue 7, July2012.

[3] Sitharthan. S, Sankaran. S “SQL Injection Attack-
Types and Classification A Review”,
InternationalJournal of Computer Science and
InformationTechnology Research ISSN 2348-120X
(online) Vol. 2,Issue 3, pp: (33-38), Month: July
September 2014.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 10, Issue 2, March – April 2021 ISSN 2278-6856

Volume 10, Issue 2, March - April 2021 Page 5

[4] Srinadh Swamy, Pavan Kumar & Vas U

Dev,”Improved Authentication Technique To Protect
WebApplications”, International Journal of Computer
Science and Engineering (IJCSE) ISSN(P): 2278-
9960;ISSN(E): 2278-9979 Vol. 3, Issue 3, May 2014.

[5] Atefeh Tajpour,Maslin Masrom, Mohammad
JojorZadeh Shooshtari, Hossein
Rouhanizeidanloo,”Comparison of SQL Injection
Detection andPrevention Tools based on Attack Type
andDeployment Requirements”, International Journal
of Advancements in Computing Technology Volume
3,Number 7, August 2011.

[6] Kamlesh Kumar Raghuvanshi, DeenBandhu
Dixit,“Prevention and Detection Techniques for
SQLInjection Attacks”, International Journal of
Computer Trends and Technology (IJCTT) – volume
12 number 3– Jun 2014.

[7] William G.J. Halfond, Jeremy Viegas, and
AlessandroOrso, “A Classification of SQL Injection
Attacks andCountermeasures”, IEEE, 2006.

[8] Hossain Shahriar , Sarah North , and Wei-Chuen
Chen,“Early Detection of SQL Injection
Attacks”,International Journal of Network Security &
ItsApplications (IJNSA), Vol.5, No.4, July 2013.

[9] Atefeh Tajpour, Suhaimi Ibrahim, Maslin
Masrom,”SQL Injection Detection and Prevention
Techniques”,al Journal of Innovative Research in
Science,Engineering and Technology (An ISO 3297:
2007Certified Organization) Vol. 3, Issue 4, April
2014.

[10] Jignesh Doshi, Bhushan Trivedi, “Assessment of
SQLInjection Solution Approaches”, International
Journalof Advanced Research in Computer Science
andSoftware Engineering, Volume 4, Issue 10,
October2014.

