
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com
Volume 3, Issue 4, July-August 2014 ISSN 2278-6856

Volume 3 Issue 4 July-August, 2014 Page 27

Abstract: A brief overview of the fields that must be
considered when designing safety-critical systems is presented.
The design of safety critical systems has been adopted static
techniques to minimize error detection and fault tolerance.
This paper specifies basic design approach by identifying the
basic components of a safety critical computer system mishap
causes and risk factors. Examines the design approach that
implements safety and reliability. This paper also deals with
some implementation issues.
Keywords— Safety Critical System, Risk, Safety,
Mishap, Risk Mitigation, Fault tolerance .
1. INTRODUCTION
Critical systems are systems in which defects could have a
dramatic impact on human life, the environment or
significant assets. Such systems are expected to satisfy a
variety of specific qualities including reliability,
availability, security and safety [1]. A real-time system is
safety critical when its incorrect behavior can directly or
indirectly lead to a state hazardous to human life.
A safety critical system is a system where human safety is
dependent upon the correct operation of the system [6]
[10]. However, safety must always be considered with
respect to the whole system including software, computer
hardware, other electronic and electrical hardware,
mechanical hardware and operators or users not just the
software element.
Defining Safe:
The notion of safety comes when we drive a car, fly on an
airliner, or take an elevator ride [11]. In each case, we are
concerned with the threat of a mishap, which the US
Department of Defense defines as an unplanned event or
series of events that result in death, injury, occupational
illness, Damage to or loss of equipment or property, or
damage to the environment.
The mishap risk assesses the impact of a mishap in terms
of two primary concerns: its potential severity and the
probability of its occurrence [13]. For example, an airliner
crash would affect an individual more severely than an
automobile fender-bender, but it rarely happens. This
assessment captures the important principle that systems
such as cars, airliners, and nuclear plants are never
absolutely safe. It also provides a design principle: Given
our current knowledge, we can never eliminate the
possibility of a mishap in a safety-critical system; we can
only reduce the risk that it will occur [7].
Risk reduction increases the system cost. In some
applications such as in nuclear energy, safety dominates

the total system cost. When creating a safe system by
minimizing cost forces us to compromise to the extent that
We expend resources to reduce mishap risk, but only to a
level considered generally acceptable.

2. BASIC SAFETY DESIGN APPROACH
Typically, Any computer system—whether it’s a fly-by-
wire aircraft controller, an industrial robot, a radiation
therapy machine, or an automotive antiskid system—
contains five primary components [13]:
The application is the physical entity that the system
monitors and controls. Sometimes developers refer to an
application as a process. Typical applications include an
aircraft in flight, a robotic arm, a human patient, and an
automobile brake.The sensor converts an application’s
measured physical property into a corresponding
electrical signal for input into the computer. Developers
sometimes refer to sensors as field instrumentation.
Typical sensors include accelerometers, pressure
transducers, and strain gauges.The effector converts an
electrical signal from the computer’s output to a
corresponding physical action that controls an
application’s function. Developers sometimes call an effect
as an actuator or final element. Typical effectors include
motors, valves, brake mechanisms and pumps. The
operator is the human or humans who monitor and activate
the computer system in real time [13]. Typical operators
include an airplane pilot, plant operator, and medical
technician. The computer consists of the hardware and
software that use sensors and effectors to monitor and
control the application in real time. The computer comes
in many forms, such as a single board controller,
programmable logic controller, airborne flight computer,
or system on a chip.Many computer systems, such as those
used for industrial supervisory control and data
acquisition; consist of complex networks built from these
basic components.
Mishap Causes:
In the basic computer system, developers fully define the
application, including all hardware, software and operator
functions that are not safety related [9]. Because the basic
computer system employs no safety features, it probably
will exhibit an unacceptably high level of mishap risk.
When this occurs, solving the design problem requires
modifying the operator, computer, sensor, and effector
components to create a new system that will meet an

A Systematic Approach for the Design of Safety
Critical Systems

Ch.Dinesh1

1Sr.Asst.Professor,

Department of CSE,
Dadi Institute of Engineering & Technology,NH-5,

Anakapalle-531002,VISAKHAPATNAM

Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com
Volume 3, Issue 4, July-August 2014 ISSN 2278-6856

Volume 3 Issue 4 July-August, 2014 Page 28

acceptable level of mishap risk.The design solution begins
with the question, how can this basic computer system fail
and precipitate a mishap? The key element connecting a
failure in the basic system to a subsequent mishap is the
hazard, defined as any real or potential condition that can
cause
• injury, illness, or death to personnel;
• damage to or loss of a system, equipment, or property;
• damage to the environment.
Hazard examples include loss of flight control, nuclear
core cooling, or the presence of toxic material or natural
gas. All such hazards reside in the application. Thus,
system design focuses first on the application component
of the system to identify its hazards. Then designers must
have their attention to the operator, sensor, computer, and
effector components.To determine how these components
can fail and cause a mishap, the designers perform a
failure-modes analysis to discover all possible failure
sources in each component. These include random
hardware failures, manufacturing defects, programming
faults, environmental stresses, design errors, and
maintenance mistakes. These analyses provide information
for use in establishing a connection between all possible
component failure modes and mishaps, as Figure 1shows.
With this analytical background in place ,actual design
can begin.

Mishap Risk Mitigation Measures
For any given the system having a high risk of mishap,
design attention turns to modifying it to mitigate this risk.
We can do this in three ways:
1) Improve component reliability and quality
2) Incorporate internal safety and warning devices
3) Incorporate external safety devices
Figure 2 shows how and where applying these mishap-
risk-mitigation measures can alleviate the computer system
mishap causes shown in Figure 1.

Improving reliability and quality involves two measures:
improving component reliability and exercising quality

measures. Reliability improvement seeks to reduce the
probability of component failure, which in turn will
Reduce mishap probability [8]. A widely used and effective
approach for improving reliability employs redundant
hardware and software components. Redesign can remove
component reliability problems. Other sources of
component failure such as procedural deficiencies ,
personnel error are difficult to find.
Although reliability and quality measures can reduce
mishap risk, they normally will not lower it to an
acceptable level because component failures will still
occur. If the project requires additional risk mitigation
steps ,internal safety devices used as defense. Even after
designers have taken these measures, system failure still
continues, resulting in mishaps. Finally external safety
devices are used as last line of defense against these
residual failures [6]. External safety devices range from
simple physical containment through computer based
safety instrumented systems. To achieve effective mishap
risk mitigation ,developers usually apply all three of these
mitigation measures to create a layered approach to system
protection.In addition ,risk mitigation efforts must be
distributed evenly across the system ‘s sensor, effector,
computer and operator components because single failure
in any of the part of the system can make the aggregate
mishap risk totally unacceptable.

3. EVALUATING SAFETY CRITICAL
COMPUTER SYSTEMS
 The design of any safety critical system must be as simple
as possible ,taking no unnecessary risks.Software point of
view ,this usually involves minimizing the use of interrupts
and minimizing the use of concurrency within the
software.Ideally,a safety critical system requiring a high
integrity level would have no interrupts and only one
task.However,this is not achievable in practice.There are
two distinct philosophies for the specification and design
of safety critical systems[2].
•To specify and design a "perfect" system, which cannot go
wrong because there are no faults in it, and to prove that
there are no faults in it.
•
may have been made, and to include error detection and
recovery capabilities to prevent errors from actually
causing a hazard to safety [10].
 The first of these approaches can work well for small
systems, which are sufficiently compact for formal
mathematical methods to be used in the specification and
design, and for formal mathematical proof of design
correctness to be established.
 The second philosophy, of accepting that no matter how
careful we are in developing a system, that it could still
contain errors, is the approach more generally adopted.
This philosophy can be applied at a number of levels:
•
errors within the routine, and to ensure that outputs are
safe.

Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com
Volume 3, Issue 4, July-August 2014 ISSN 2278-6856

Volume 3 Issue 4 July-August, 2014 Page 29

•Within the software, to check that system inputs are valid,
to trap errors within the Software, and to ensure that
system outputs are safe [14].
•
rest of the system is behaving correctly, and to prevent it
from causing the system to become unsafe. The safety
enforcing part is usually referred to as an interlock or
protection subsystem.After designers have applied
measures to mitigate mishap risk to a basic system, they
must determine if the modified system design meets an
acceptable level of mishap risk [13]. In order to determine
this three analytical techniques are used.Failure modes and
effects analysis(FMEA),the designer looks at each
component of the system,considers how that component
can fail,then determines the effects each failure would have
on the system.Fault Tree Analysis(FTA) reverses this
process by starting with an identified and known mishap
and downward to identify all the components that can
cause a mishap and all the safety devices that can mitigate
it.Risk analysis(RA), In contrast to FMEA and FTA
,which are both qualitative methods ,risk analysis(RA) is
quantitative measure that produces probabilities of mishap.
If the risk calculation yields an acceptable result, the
design is ready for additional validation steps such as risk
assessment,testing and field trials to assure that the
system,when implemented ,will be safe.
4. DESIGN PATTERNS FOR SAFETY AND
RELIABILITY
A pattern is a generalized solution to a common problem.
A pattern is instantiated and customized for the particular
problem at hand, but provides a means for capturing
design knowledge by capturing best practices from
experienced designers [4]. There are several design
patterns that affect both safety and reliability.
• Homogeneous Redundancy Pattern
• Diverse Redundancy Pattern
• Monitor-Actuator Pattern
• Safety executive Pattern
Software Fault Tolerance:Fault tolerance is intended to
handle faults when they occur in an executing system.
Since software faults are expected to exist, they need to be
managed, i.e. avoided, removed, evaded, or tolerated.Fault
Prevention: There are two means of fault prevention:
avoiding their introduction during production and
removing them before deployment. In both cases faults are
dealt with prior to execution Fault avoidance‘ is a design
activity that attempts to prevent faults from being
introduced into the deployed system [3]. Fault removal‘ is
an implementation activity focused upon testing.Fault
Tolerance:In contrast to fault avoidance, fault tolerance
schemes consider faults inevitable and deal with them after
deployment.There are two types of fault tolerances.:Static
and Dynamic.Fault Detection:Errors may be detected by
both implicit and explicit checks. Implicit checks are
produced by the underlying virtual machine including both
hardware checks (e.g., divide by zero) and software checks
(e.g., null pointer dereference) implemented by the
compiler and the run-time support environment. Explicit
checks are those by which a program checks its own

dynamic behaviour at run-time.Fault Location:It is
implantation specific.The location of the risk has to be
identified by applying fault location mechanisms.Fault
Containment: An assessment of the propagation of the
fault and an action to contain that propagation are
necessary because there is latency between the occurrence
of an error and its detection.Error Recovery:Error recovery
is the central component of dynamic fault tolerance
strategies – it must transform a faulty system into one with
a valid, perhaps degraded, state [Burns01]. Two
approaches to error recovery have been identified:
backward error recovery and forward error
recovery.Backward error recovery: Backward error
recovery mechanisms attempt to simulate the reversal of
time to a point at which the system state was error-free.
They do so by saving state when it is assumed to be valid
and then restoring that state as necessary. The act of
saving state is called
recovery: Forward error recovery mechanisms attempt to
make selective changes to an erroneous state in order to
move to a new error-free state.

5. IMPLEMENTATION
Some programming language features prone to problems
than others. This is because of number of reasons [1][8].
Those are

1) Programmers do errors while using the feature.
2) Poor compilation or poor implementation.
3) Programs written may be difficult to analyse and test.
Few programming language features that cause

problems:
1)Usage of pointers :It is very difficult to use the

pointers in programming language .Inorder to use
pointers ,the developers need great understanding of
memory address and management.Programs which
use pointers can be difficult to understand or analyze.

2)Memory Management: The memory allocation and
deallocation is related to pointers.every programmer
allocate memory but sometimes they forget to
deallocate .Compilers and operating systems
frequently fail to fully recover deallocated memory.
The result is errors which are dependent on execution
time, with a system mysteriously failing after a period
of continuous operation.

3)Multiple Entry and Exits: More number of exit and
entry points to loops, blocks, procedures and
functions, is really just a variation of unstructured
programming. However, controlled use of more than
one exit can simplify code and reduces the risk.

4)Type of Data : where the type of data in a variable
changes, or the structure of a record changes, is
difficult to analyze, and can easily confuse a
programmer leading to programming errors.

5)Declaration & Initialisation: A simple spelling
mistake can result in software which compiles, but
does not execute correctly. In the worst case individual
units may appear to execute correctly, with the error
only being detectable at a

system level. Declaration must be perfect.

Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com
Volume 3, Issue 4, July-August 2014 ISSN 2278-6856

Volume 3 Issue 4 July-August, 2014 Page 30

6)Parameter Passing: passing one procedure or function
as a parameter to another procedure or function, is
difficult to analyze and test thoroughly.

7) Recursion:Recursion is calling a function itself.It is
difficult to analyze and test thoroughly. Recursion can
also lead to unpredictable real time behaviour.

8) Concurrecy and Interrupts:These features are
supported directly by some programming languages
only.Use of concurrency and interrupts is some what
produce ambiguity.

The use of such programming language features in safety
critical software is discouraged.Most modern programming
languages encourage the use of block structure and
modular programming, such that programmers take good
structure for granted. Well structured software is easier to
analyze and test, and consequently less likely to contain
errors.The features of few programming languages which
can be used to increase reliability are:

 1) Perfect data usage:The data is only used and assigned
 where it is of a compatible type.
 2) Constraint checking: Ensure that arrays bounds are

not Violated, that data does not overflow, that zero
division Does not occur

 3) Parameter checking:To ensure that parameters
passed to or from procedures and functions are of the
correct type, are passed in the right direction (in or
out) and contain valid data.

 There are no commonly available programming languages
which provide all of the good language features. The
solution is to use a language subset, where a language with
as many good features as possible is chosen, and the bad
features are simply not used [12]. Use of a subset requires
discipline on behalf of the programmers and ideally a
subset checking tool to catch the occasional mistake. An
advantage of a subset approach is that the bounds of the
subset can be flexible, to allow the use of some features in
a limited and controlled way.Ada is the preferred language
for the implementation of safety critical software because it
can be used effectively within the above constraints.
6. SAFER DESIGN
Even with a safe design,it is possible to increase or
decrease device safety.Safety of the device depends on how
the software is written [3][4] .The issues related to coding
for safety are language selecton and usage of safe coding
styles.Languages that provide strong compile time and
runtime checking are considered safer.Some of the issues
for safer design are:
1) Language choice
2) Compile time checking
3) Runtime checking
4) Exceptions Vs Error codes
5) Use of safe and Lanuage subsets
Some of the guidelines and rules for preparing safety
critical code proposed by Gary Holtz are [5]
• Restrict to simple control flow constructs.
• Give all loops a fixed upper-bound.
• Do not use dynamic memory allocation after
initialization • Limit functions to no more than 60 lines of
text.

• Use minimally two assertions per function on average.
• Declare data objects at the smallest possible level of
scope.
• Check the return value of non-void functions, and check
the validity of function parameters.
• Limit the use of the preprocessor to file inclusion and
simple macros.
• Limit the use of pointers. Use no more than one level of
dereferencing.
• Compile with all warnings enabled, and use source code
analyzers.

7. CONCLUSION
 Designing safety–critical systems is a complex thing
involving several fields. This paper describes about how to
engineer safe mechanical systems than safe computing
systems. In safety critical systems the importance is on
using a safety process rather than specifying techniques for
ensuring safety and reliability. This paper will give an
analysis of safety critical system means about design,
implementation etc. Although safety critical systems have
been in use for many years, the development of safety
critical software is still a relatively new and immature
subject.New techniques and methodologies for safety
critical software are a popular research topic with
universities, and are now becoming available to industry.
Tools supporting the development of safety critical
software are now available, making the implementation of
safety critical standards a practical prospect.
REFERENCES
[1] N.Leveson, Safeware: System Safety and Computers,
 Addison Wesley, 1995.
 [2] L.Pullum, Software Fault Tolerance: Techniques and
 Implementation, Artech House, 2001
[3] W.R. Dunn, Practical Design of Safety- Critical

Computer Systems, Reliability Press, 2002.
[4] Kopetz, H.,Real-Time Systems, Design Principles for
 Distributed Embedded Applications, Kluwer
 Academic Publishers, 1997.
[5] Conmy, P., Nicholson, M., Purwantoro, Y.,M.
 And McDermid, J. (2002) Safety Analysis and
 Certification of Open Distributed Systems.
 [6] J. A. McDermid, The cost of COTS, IEE Colloquium

–
 COTS and Safety critical systems London,1998.
[7] Tindell, K., “Analysis of Hard Real-Time
 communications”,Real-Time Systems,vol 9,pp,147-
 171,1995.
[8] Jesty, P.H., Hobley, K.M., Evans, R., and Kendall, I.,
 “Safety Analysis of Vehicle-Based Systems,”
 proceedings of the 8th Safety-critical Systems
 Symposium, 2000.
[9] Robyn R. Lutz, “Software Engineering for Safety: a
 Roadmap”,Proceedings of the Conference on The
 Future of Software Engineering, p.213-226, June 04-
 11,2000, Limerick,Ireland .
[10] John C. Knight. “Safety Critical Systems: Challenges

and Directions” Proceedings of the 24th International

Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com
Volume 3, Issue 4, July-August 2014 ISSN 2278-6856

Volume 3 Issue 4 July-August, 2014 Page 31

Conference on Software Engineering (ICSE),
Orlando, Florida, 2002.

[11] Raghu Singh. “A Systematic Approach to Software
Safety”. Proceedings of Sixth Asia Pacific Software
Engineering Conference (APSEC), Takamatsu, Japan
,1999.

[12] N. G. Leveson “Software Safety: Why, what, and
how”. ACM Computing Surveys, 18(2):125-163, June
1986.

[13] The University of York. Safety critical systems
engineering, system safety engineering: Modular
MSc, diploma, certificate, short courses1999. The
University of York, Heslington, U.K.;
www.cs.york.ac.uk/MSc/SCSE.

[14]The Hazards Forum. Safety-related systems:
Guidance for engineers. The Hazards Forum (1995).
London, U.K.;
www.iee.org.uk/PAB/SCS/hazpub.htm.

Chandrasekharam Dinesh is a Sr. Assistant Professor
in the Department of Computer Science &
Engineering, Dadi Institute of Engineering and
Technology (Affiliated to JNTUK), Anakapalle,

Andhra Pradesh, India. He Completed M.Tech in Computer
Science . His main research interests are Software engineering,
Operating System, Distributed Systems.

