
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

 Volume 4, Issue 1, January-February 2015 ISSN 2278-6856

Volume 4, Issue 1, January – February 2015 Page 113

Abstract
Automated Theorem provers are used to check if the
mathematical theorems are proved true or false. If the
theorem is true, the automated theorem prover, usually, prints
out the proof. In this paper we present a new approach to deal
with the other case, i.e. if the theorem is false. The semantic
tableau method is used to extend the theorem domain. The
modified automated theorem prover suggests an extension of
the domain, if it is available, to present a new provable
theorem.
Keywords: Artificial intelligence, Automated theorem
provers, Tableaux, PROLOG

1. INTRODUCTION
Automated theorem proving (ATP) is the automatic
proving of mathematical theorems by computer programs
[1]. SPASS, PTTP, ACL2, Vampire, Otter, HOL, and
others are examples of already existing ATP programs [2].
These ATPs use different techniques to achieve the target
results. Resolution and tableau are the most popular
techniques used to implement theorem provers [3]. ATPs
that use resolution convert logical programs first to the
Conjunctive Normal Form (CNF). The resolution
technique depends on choosing two clauses one of them
contains a predicate and the other contains the negation of
that predicate [3], [4]. The resulting new clause is formed
by taking the disjunction of the two clauses after removing
this predicate and its negation from the two clauses. The
process is repeated until an empty set is formed or no
other clauses can be resolved. If an empty set is formed
then the program is proved true; otherwise it is false. A
mathematical theory is proved by initially negating the
goal to be proved and adding it to the premises of the
program. If an empty set is driven after applying the
resolution one or more times. Then, a contradiction is
driven, and so the original goal is proved; otherwise, the
goal is not provable using the current premises [5]. On
the other hand, the main idea behind the tableau
technique is to construct a truth tree by using a logical
program in Disjunctive Normal Form (DNF) as the parent
node. The tree is expanded by constructing a new branch
for each disjunction and a new node in the same branch
for each conjunction. A branch is closed if the branch
contains a predicate and its negation or if it contains a
false predicate [5]-[7]. To prove a theorem, the negation
of the goal formula is negated and added to the logical
program. If all branches of the tableau are closed, then the

original goal is proved true. Otherwise, if at least one
branch is not closed, then the original goal cannot be
proved true. In this paper we extend the work presented
in [8], our goal is to implement an ATP that can either
prove a theorem if it is provable or present a modification
if applied to this theorem it becomes true. The technique
used is to incrementally extending the domain of the
theorem by adding the missing predicates in the tableau
proof. Of course, the new presented theorem is not the
same like the original, but the ATP presents a new
theorem with a new domain. Correcting incorrect plans,
incorrect mathematical theorems, and inconsistent logic
gates is some applications of this concept.
2. The tableau proving procedure
In tableau to prove a formula X we begin with ¬X and
produce a contradiction [3]-[8]. A tableau proof is a binary
tree labeled with formulas, where the tree itself represents
the disjunction of its branches, and each branch is the
conjunction of formulas appearing on it [9]-[11]. A branch
of the tableau tree is closed if a contradiction or false
appears on it and the tableau tree is closed if all branches
are closed. LeanTap, TAP, Bluegum, Cassandra, and
Deep Though are examples of theorem provers that use
tableau proving procedure [12]. A PROLOG
implementation of a tableau theorem was introduced in
[5], a PROLOG implementation of Connection Tableau is
presented in [6], and we presented an implementation of a
tableau- based theorem prover in [8]. The tableau-based
theorem provers check the branches one-by-one, if all
branches are closed then the whole tree is closed,
otherwise if one of the branches is open then the tableau
does not check the rest of branches, and the whole tree is
open. A closed tree means that the negated formula in the
parent node is a contradiction, and then the original
formula is true. On the other side, if the tree is open, then
the negated formula is true, and so the original formula is
a contradiction. The idea of our work depends on
checking the whole tableau tree in both cases, and keeps
the open branches, if any. In [8], a tableau-based theorem
prover with some improvements is presented. One of these
improvements is to split the branch list into two lists, the
negative list and the positive list respectively. The branch
is closed if a predicate appears in both positive and
negative lists. So, if the tableau has an open branch, it can
be converted into closed one if a one of the predicates, or
all, that appears in the positive list is added to the negative
list or one of the predicates, or all, that appears in the

Theorem proving by incrementally extending
theorem domain

Ismail A. Ismail1 and Mohamed G. Awad2

1Faculty of information systems and computer science, 6th October University,

6th October city, Egypt.

2Faculty of Education, Suez Canal University Al-Arish city, Egypt.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

 Volume 4, Issue 1, January-February 2015 ISSN 2278-6856

Volume 4, Issue 1, January – February 2015 Page 114

negative list is added to the positive list. We can keep
track of all these predicates that appear in the
positive/negative list of the open branch but does not
appear in the negative/positive list. After checking all
open branches of the tableau tree, we will have a list of all
predicates that make branches open. In the original
Tableau, the formula X is a theorem if the formula ¬X in
the parent node of the tableau causes the tableau tree to be
closed, i.e., all the branches of the tableau is closed. From
the approach presented in [8] point of view, a tableau is
closed if the list O is empty, where O is the open branches
list. If the list O is not empty, then the original formula X
is not a theorem, and the list O will contain the predicates
that make the tableau open and more work is needed to
make this formula provable, i.e. we need to add
disjunction of these predicates to the original formula X to
make X provable. In Prolog, the predicates flatten/2 and
list_to_set/2 will output a new list RO from the list O
without redundancy. Of course, we can simply add the
conjunction of all of all predicates in RO to the formula, at
the tableau's parent node, ¬X, or the disjunction of the
negation of these predicates to the original formula X. this
way is both simple and trivial, amore convenient method
is needed to add the minimum number of predicates to the
original theorem. If the predicates is added one-by-one
and in every time the tableau is checked if it is closed or
not, does not guarantee that the set of added predicates are
the minimum set. A more intelligent and simple way to
add the disjunction of the minimum number of predicates
to the original theorem is to incrementally extending the
domain of the theorem step by step using the power set of
the negation of the open list O. If the original formula is
X, Y= neg X, O is the open branches of the tableau, and
RO is the list of predicates that makes branches open, i.e.
the contradiction list. Let NRO is the list that contains the
negative of predicates in RO list and let PO is the power
set of NRO. Adding any predicates to the closed branches
will not change the state of the branch, it is already closed,
but adding predicates to the open branch can change the
state of the branch from open to close. To reduce the
work, if the proposed ATP is attempting to correct a
theorem by closing the open branches, it will not add any
predicates to the closed branches in the correction stage
and it will work only with open ones. The ATP will add
the smallest set in PO to all open branches in the tableau,
i.e. to all branches in the list O, and it will check if these
branches become closed. If the branches in O are closed
then the whole tableau tree is closed. If the branches in O
are not closed then the ATP will take the next smallest set
in PO and repeat the previous work. If PO is empty, then
the ATP will not be able to extend the improvable theorem
to a provable one. For example, the theorem P and ¬P is
improvable and the proposed ATP could not extend it to a
provable one, since the. On the other hand, If the
branches in O become closed then the open tableau can be
extended to a closed one using the current smallest set
from list PO.

The following pseudo code shows how the proposed ATP
works.
Let X is the original formula
Y= neg X
Construct the tableau tree of Y and save it in Z
If Z is closed then
print(' X is a Theorem')
Else
Store all open branches in O
Store all unrepeated predicates in O in RO
NRO= neg RO
PO is the power set of NRO.
Repeat
H= smallest set in PO
Add H to all branches of O
PO=PO-H
check if O is closed.
Until O is closed or PO is empty or all branches of O
are closed
if PO is empty and O is open then
print('can't extend X to a provable theorem')
End
if O is closed then
print('X can be extended to a provable theorem using')
print(H)
End
End..

Figure 1 a flow chart of the proposed ATP

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

 Volume 4, Issue 1, January-February 2015 ISSN 2278-6856

Volume 4, Issue 1, January – February 2015 Page 115

3. Conclusion
In this paper we presented a new approach to deduce
provable theorems from improvable theorems, by
incrementally extending the domain of the theorem and
adding the predicates and check if the theorem is provable
or not. Some enhancements are added to guarantee that
the added conjunction of predicates is minimum. A
pseudo code and a flow chart of the proposed approach are
presented and discussed.
References
[1] Castelló,R. , Mili, R., (1998). Theorem Provers

Survey. The University of Texas at
Dallas.(http://www.cs.utexas.edu/~ragerdl/cs378/read
ing/Castello_-_Theorem_Provers_Survey.pdf)

[2] http://www.cs.miami.edu/~tptp/OverviewOfATP.html
[3] Hein, J. L. (1996). Theory of Computation: An

Introduction. Sudbury, MA: Jones & Bartlett.
[4] http://www.cis.cau.edu/prolog/docs/Prolog_Lab_Man

ual.pdf
[5] Fitting, M. (1996). First-Order Logic and Automated

Theorem Proving. Graduate Texts in Computer
Science. Springer-Verlag, 2nd edition.

[6] Otten, J. and Bibel, W. (2003). leanCoP: Lean
Connection-Based Theorem Proving. Journal of
Symbolic Computation , 36(1-2):139–161.

[7] Agostino, M. , Gabbay, D., Haehnle, R., Posegga, J.
(Eds) , Handbook of Tableau Methods, Kluwer.

[8] Ismail, I., Awad, M. , Rashed E., (2014) An
implementation of a tableau-based theorem prover
with some improvements. The AIUB Journal of
Science and Engineering (AJSE), Vol. 13(1) 93:98.

[9] Sutcliffe, G., Suda, M., Teyssandier, A., Dellis, N.
and Melo, G.,(2010). Progress Towards Effective
Automated Reasoning with World Knowledge. In
Hans W. Guesgen and R. Charles Murray, editors,
FLAIRS Conference. AAAI Press.

[10] Harrison, M. D., Masci, P. and Campos, J. C. Curzon,
P. (2013). Automated theorem proving for the
systematic analysis of interactive systems.
Proceedings of the 5th International Workshop on
Formal Methods for Interactive Systems, City
University,London, June 24th, 2013.

[11] Folkler, A. L. E. (2002).Automated Theorem Proving
Resolution vs. Tableau (master's Thesis). Blekinge
Institute of Technology.

[12] Schumann, J. (1994). Tableaux-based Theorem
Provers: Systems and Implementations. Journal of
Automated Reasoning, 13(3):409-421.

AUTHORS

Prof. Ismail A. Ismail is the dean of
Faculty of Computers and
Informatics, 6Th of October
University, Egypt. He was born on
March 7, 1946. He received the B.S.
degree in pure mathematics / physics

from Cairo University, Egypt in 1967, the M.Sc. Degree
and the Ph.D. degree in Signal Processing from the Cairo

University, Egypt in 1971 and 1976, respectively. He has
more than 150 published papers and he is the founder of
Faculty of Computers and Informatics, Zagazig University
in 1997.

Mohamed G. Awad , is with the
Department of Mathematics, Faculty of
Education, Suez Canal University, Al-
Arish, Egypt. He received the B.Sc.
Degree in Scientific Computations
From Suez Canal University in 1998,

the M.Sc. degree in Computer Science from Suez Canal
University in 2005.

