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Abstract 
Automated Theorem provers are used to check if the 
mathematical theorems are proved true or false. If the 
theorem is true, the automated theorem prover, usually, prints 
out the proof. In this paper we present a new approach to deal 
with the other case, i.e. if the theorem is false. The semantic 
tableau method is used to extend the theorem domain. The 
modified automated theorem prover suggests an extension of 
the domain, if it is available, to present a new provable 
theorem. 
Keywords: Artificial intelligence, Automated theorem 
provers, Tableaux, PROLOG 

1. INTRODUCTION 
Automated theorem proving (ATP) is the automatic 
proving of mathematical theorems by computer programs 
[1]. SPASS, PTTP, ACL2, Vampire, Otter, HOL, and 
others are examples of already existing ATP programs [2]. 
These ATPs use different techniques to achieve the target 
results. Resolution and tableau are the most popular 
techniques used to implement theorem provers [3]. ATPs 
that use resolution convert logical programs first to the 
Conjunctive Normal Form (CNF). The resolution 
technique depends on choosing two clauses one of them 
contains a predicate and the other contains the negation of 
that predicate [3], [4].  The resulting new clause is formed 
by taking the disjunction of the two clauses after removing 
this predicate and its negation from the two clauses. The 
process is repeated until an empty set is formed or no 
other clauses can be resolved. If an empty set is formed 
then the program is proved true; otherwise it is false. A 
mathematical theory is proved by initially negating the 
goal to be proved and adding it to the premises of the 
program. If an empty set is driven after applying the 
resolution one or more times. Then, a contradiction is 
driven, and so the original goal is proved; otherwise, the 
goal is not provable using the current premises [5].  On 
the other hand, the main idea behind the tableau 
technique is to construct a truth tree by using a logical 
program in Disjunctive Normal Form (DNF) as the parent 
node. The tree is expanded by constructing a new branch 
for each disjunction and a new node in the same branch 
for each conjunction. A branch is closed if the branch 
contains a predicate and its negation or if it contains a 
false predicate [5]-[7]. To prove a theorem, the negation 
of the goal formula is negated and added to the logical 
program. If all branches of the tableau are closed, then the 

original goal is proved true. Otherwise, if at least one 
branch is not closed, then the original goal cannot be 
proved true.  In this paper we extend the work presented 
in [8], our goal is to implement an ATP that can either 
prove a theorem if it is provable or present a modification 
if applied to this theorem it becomes true. The technique 
used is to incrementally extending the domain of the 
theorem by adding the missing predicates in the tableau 
proof. Of course, the new presented theorem is not the 
same like the original, but the ATP presents   a new 
theorem with a new domain. Correcting incorrect plans, 
incorrect mathematical theorems, and inconsistent logic 
gates is some applications of this concept. 
2. The tableau proving procedure 
In tableau to prove a formula X we begin with ¬X and 
produce a contradiction [3]-[8]. A tableau proof is a binary 
tree labeled with formulas, where the tree itself represents 
the disjunction of its branches, and each branch is the 
conjunction of formulas appearing on it [9]-[11]. A branch 
of the tableau tree is closed if a contradiction or false 
appears on it and the tableau tree is closed if all branches 
are closed. LeanTap, TAP, Bluegum, Cassandra, and 
Deep Though are examples of theorem provers that use 
tableau proving procedure [12]. A PROLOG 
implementation of a tableau theorem was introduced in 
[5], a PROLOG implementation of Connection Tableau is 
presented in [6], and we presented an implementation of a 
tableau- based theorem prover in [8].  The tableau-based 
theorem provers check the branches one-by-one, if all 
branches are closed then the whole tree is closed, 
otherwise if one of the branches is open then the tableau 
does not check the rest of branches, and the whole tree is 
open.  A closed tree means that the negated formula in the 
parent node is a contradiction, and then the original 
formula is true. On the other side, if the tree is open, then 
the negated formula is true, and so the original formula is 
a contradiction. The idea of our work depends on 
checking the whole tableau tree in both cases, and keeps 
the open branches, if any.  In [8], a tableau-based theorem 
prover with some improvements is presented. One of these 
improvements is to split the branch list into two lists, the 
negative list and the positive list respectively.  The branch 
is closed if a predicate appears in both positive and 
negative lists. So, if the tableau has an open branch, it can 
be converted into closed one if a one of the predicates, or 
all, that appears in the positive list is added to the negative 
list or one of the predicates, or all, that appears in the 
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negative list is added to the positive list. We can keep 
track of all these predicates that appear in the 
positive/negative list of the open branch but does not 
appear in the negative/positive list. After checking all 
open branches of the tableau tree, we will have a list of all 
predicates that make branches open.  In the original 
Tableau, the formula X is a theorem if the formula ¬X in 
the parent node of the tableau causes the tableau tree to be 
closed, i.e., all the branches of the tableau is closed.  From 
the approach presented in [8] point of view, a tableau is 
closed if the list O is empty, where O is the open branches 
list. If the list O is not empty, then the original formula X 
is not a theorem, and the list O will contain the predicates 
that make the tableau open and more work is needed to 
make this formula provable, i.e. we need to add 
disjunction of these predicates to the original formula X to 
make X provable.  In Prolog, the predicates flatten/2 and 
list_to_set/2 will output a new list RO from the list O 
without redundancy. Of course, we can simply add the 
conjunction of all of all predicates in RO to the formula, at 
the tableau's parent node, ¬X, or the disjunction of the 
negation of these predicates to the original formula X. this 
way is both simple and trivial, amore convenient method 
is needed to add the minimum number of predicates to the 
original theorem. If the predicates is added one-by-one 
and in every time the tableau is checked if it is closed or 
not, does not guarantee that the set of added predicates are 
the minimum set.  A more intelligent and simple way to 
add the disjunction of the minimum number of predicates 
to the original theorem is to incrementally extending the 
domain of the theorem step by step using the power set of 
the negation of the open list O.  If the original formula is 
X, Y= neg X, O is the open branches of the tableau, and 
RO is the list of predicates that makes branches open, i.e. 
the contradiction list.  Let NRO is the list that contains the 
negative of predicates in RO list and let PO is the power 
set of NRO.  Adding any predicates to the closed branches 
will not change the state of the branch, it is already closed, 
but adding predicates to the open branch can change the 
state of the branch from open to close.  To reduce the 
work, if the proposed ATP is attempting to correct a 
theorem by closing the open branches, it will not add any 
predicates to the closed branches in the correction stage 
and it will work only with open ones.  The ATP will add 
the smallest set in PO to all open branches in the tableau, 
i.e. to all branches in the list O, and it will check if these 
branches become closed. If the branches in O are closed 
then the whole tableau tree is closed.  If the branches in O 
are not closed then the ATP will take the next smallest set 
in PO and repeat the previous work. If PO is empty, then 
the ATP will not be able to extend the improvable theorem 
to a provable one. For example, the theorem P and ¬P is 
improvable and the proposed ATP could not extend it to a 
provable one, since the.  On the other hand, If the 
branches in O become closed then the open tableau can be 
extended to a closed one using the current smallest set 
from list PO. 
 

The following pseudo code shows how the proposed ATP 
works. 
Let X is the original formula  
Y= neg X 
Construct the tableau tree of Y and save it in Z 
If Z is closed then 
print(' X is a Theorem') 
Else  
Store all open branches in O 
Store all unrepeated predicates in O in RO 
NRO= neg RO 
PO is the power set of NRO. 
Repeat  
H= smallest set in PO 
Add H to all branches of O 
PO=PO-H 
check if O is closed.  
Until O is closed or PO is empty or all branches of O  
are closed 
if PO is empty and O is open then 
print('can't extend X to a provable theorem') 
End 
if O is closed then 
print('X can be extended to a provable theorem using') 
print(H) 
End 
End.. 

 
Figure 1 a flow chart of the proposed ATP 
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3. Conclusion 
In this paper we presented a new approach to deduce 
provable theorems from improvable theorems, by 
incrementally extending the domain of the theorem and 
adding the predicates and check if the theorem is provable 
or not. Some enhancements are added to guarantee that 
the added conjunction of predicates is minimum. A 
pseudo code and a flow chart of the proposed approach are 
presented and discussed. 
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