Analysis of Technological Factors Influencing Adoption of ICT in Public Secondary Schools in Kenya

Bernard G. Gakenga¹Dr. Joyce W. Gikandi²John W. Kamau³

¹Mount Kenya University, School of Applied Science, Department of Information Technology
²Mount Kenya University, School of Applied Science, Department of Information Technology
³Mount Kenya University, School of Applied Science, Department of Information Technology

Abstract
In the current digital society, it is increasingly becoming important for any aspect of human endeavor to integrate Information communication technologies (ICT) for enhanced productivity. ICT adoption and integration in education is one of the key human endeavors globally. Emphasis on teacher centered teaching could be changed to student centered with the advent of adopting ICT in schools creating an interactive and interesting environment for learning. Change of teaching methodologies has been facilitated by adoption of ICT hence an interaction between learners and Teachers in education. Despite the various studies conducted on ICT adoption, integration and implementation, Kenya is still far away from realizing it. This calls into the question as to how ICT technological factors influence the adoption of ICT in schools. To fill this gap, this study analyzes ICT technological factors as the key factor influencing adoption of ICT in public secondary schools in Kenya. This understanding is important to the policy makers who can embrace it to enhance the adoption, integration and implementation of ICT in education. Across sectional and descriptive survey was carried out using qualitative and quantitative methods and a census done in 32 public secondary schools in Kiambu County. Data was collected using interview schedules and questionnaires. The study established various technological factors that influence adoption of ICT in education. As a result, this study recommends a review on ICT adoption model used in public secondary schools in Kenya.

Keywords: ICT Adoption, ICT Integration, ICT Implementation, Technical Support and Technological Factors.

1. INTRODUCTION
In the current digital society, it is increasingly becoming important for any aspect of human endeavor to integrate Information communication technologies (ICT) for enhanced productivity. In the light of this, ICT adoption and integration in education continues to gain momentum in both developed and developing nations. Adoption is defined as a decision that individuals make each time that they consider taking up an innovation[1]. In other words it is the decision of an individual to make use of an innovation as the best course of action available after hearing about an innovation[2]. ICT integration is the means of using any ICT tool to assist teaching and learning[3]. ICT integration is farther linked with the concept of wholeness[4]. In this study, Roger’s definition of adoption is adopted as well as Williams’ definition of ICT integration.

In most of the countries priority is given to ICT adoption integration and implementation in education. In realization of the huge potentials of ICT in education, governments have heavily invested in developing their respective ICT in Education Plans and bringing various ICT equipment and resources into schools[5]. In Kenya, Ministry of Education Science and Technology (MOEST), in partnership with three companies; Microsoft Corporation, Oracle Corporation and Digital Satellite Television (DSTV), did a pilot e-learning program implementation in Kenya in selected schools[6]. In support of ICT adoption integration and implementation in education, Kenya government in collaboration with other stakeholders involved in enhancing teaching and research in learning institutions have constructed a terrestrial fiber-optic network that connects most institutions of higher learning to enable them integrate their facilities for the purpose of sharing resources[7]. Despite this effort adoption of ICT information systems like: inter Organization Information Systems in education is far from being realized[7]. Reality of ICT is lagging far behind the vision, as advocates of ICT in education tend to only look at the technology and not how it is used[8]. This oversight has continuously remained a great barrier to adoption of ICT, as it was also noted that the success of the implementation of ICT is not dependent on the availability or absence of one individual factor, but is determined through a dynamic process involving a set of interrelated factors[9]. It is therefore clear that our main focus now should be how ICT is used [10] as cited in [8].
Theoretical grounding for understanding and developing clear process of ICT adoption, integration and implementation has been lacking, the findings are supported by the study done by [11],[12],[13], [14] as cited in [8]. To build understanding it is important to develop good case studies with nice examples of best practices and new technology tools for learning [8], as presence or absence of one factor is not a sole determinant of ICT adoption[9]. Despite that there is need to develop a theoretical solution, which of which it is an involving task [8]. In this realization various scholars made effort and developed frameworks for adoption of ICT in education. However a search of the literature did not reveal any integrated model for ICT adoption in secondary education. This paper aims to fill that gap with a focus on identifying technological factors and developing an Integrated ICT Adoption Model applicable in adoption, integration and implementation of ICT in education. This paper also aims to enhance understanding of the core components valid and reliable in ICT adoption, integration and implementation in education, as it is highly informed by the empirical study on technological factors in ICT adoption, integration and implementation in teaching and learning.

2. PROBLEM BACKGROUND

Vast advancement in ICT puts the education sector into a struggle in the effort to match the technology trends with its application in education. Use of ICT in some developing countries like Kenya secondary schools is growing at a sluggish rate, which is largely due to the technological factors including internet connectivity[7]. The government of Kenya has put a lot of effort to advance ICT adoption in education, but on the other hand, equivalent results in adoption of ICT are yet to be realized in secondary education. Reference [5] assert that ICT holds promise in providing not only anywhere and anytime access to knowledge, but also equal opportunities for networking and communication that allow knowledge sharing, participation, and lifelong learning. In realization of the huge potentials of ICT adoption in education, governments have heavily invested in developing their respective ICT in Education Plans and on bringing various ICT equipment and resources into schools[5]. Ministry of Education, Science and Technology (MOEST), in partnership with three companies; Microsoft Corporation, Oracle Corporation and Digital Satellite Television (DSTV), did a pilot e-learning program implementation in Kenya in selected schools[15].

In the same vein, effective integration of online formative assessment as part of ICT integration in teaching and learning promotes students’ engagement in self-monitoring and assessment, reflectivity and self-regulatory processes[16]. This implies that online educators can exploit the potential of online formative assessment to develop learner and assessment-centered environments that focus on enhancing learning experiences as opposed to teacher-centered environments where the teacher is the expert and learners assume a passive role [16].

Various types of ICT tools available and relevant in education include teleconferencing, email, video conferencing, interactive radio conferencing, television lessons, radio broadcasts, interactive voice response system YouTube, Internet, websites, animations, audiocassettes, and CD-ROMs among others that have been used in education for different reasons[17].

ICT adoption, integration and implementation is of paramount importance in the access of knowledge and keeping pace with the modern developments[18]. Great contribution of ICT in the creation of digital resources like digital libraries where the students, teachers, and professionals can access research material and course material from at any time from anywhere facilitating sharing of scholarly material avoiding duplication of work[19],[17]. New educational approaches are attainable through adoption of ICT, eliminating time and geographical barriers in education where learners and teachers can log on from any place and access and provide speedy dissemination of education[17] to target disadvantaged groups along the bond locally and internationally for both formal and non-formal education like health campaigns and literacy campaigns[5]. In addition ICT adoption provides higher order skills such as collaborating across time and place and solving complex real world problems improving the perception and understanding of the world of the student[17]. Thus ICT can be used to prepare the workforce for the information society and the new global economy[20].

3. PROBLEM STATEMENT

Notably inability to adopt ICT in education with equal results as the effort and resources invested has attracted various scholars to research and advice, on ways to overcome hindering barriers. Indeed some research works have been done on factors affecting ICT adoption; however, despite these works, the increase in the rate of adoption of ICT is still very low. Lack of technical support in schools is the most prominent concern for the reluctance in the adoption of ICT in education [21] as well as lack of expertise in using ICT as well. In view of this, this study answers the following research questions:

3.1 Research Hypothesis

This study collected and analyzed data to test the following hypothesis “H0: ICT technological factors have no influence in adoption of ICT in public secondary schools in Kenya.”

3.2 Conceptual Framework for the Study

ICT technological factors collectively influence the adoption of ICT in teaching and learning. Some of these factors include internet connectivity, perceived complexity & Compatibility, availability of technical support, use of mobile learning technologies, Technical Knowledge and skills, ICT Resources and policy.
4. METHODOLOGY

4.1 Research design and method
Quantitative research methodology has been used in this study aiming at classifying features, counts them, and constructs statistical models in an attempt to explain what is observed[22]. This is also supported by Wallimanas cited in reference [23], as applicable when working with data containing some magnitude.

Non-experimental design was used to establish the factors that are influencing the integration and the use of ICT in teaching and learning in secondary schools in Kenya. Non-experimental research design was used as it does not involve manipulation of the situation, circumstances or experience of the participants. A non-experimental design does not compare one group with another but describes the relationship between an intervention (treatment) and its effects on the population of interest[24]. In addition it may provide a rich understanding of the contexts, process, event, or situation and explain why results occurred, which may be essential for building result chains as the case of this study. Although it does not determine the causation, it provides good analysis of data, showing dependence of variables, used in decision making. Non-experimental research designs can be broadly classified into three categories. First, relational designs: in which a range of variables is measured, [24]. This design is also called correlational studies, because correlational data are most often used in analysis [24]. It is important to clarify here that, correlation does not imply causation, but rather identifies dependence of one variable on another. Correlational designs are helpful in identifying the relation of one variable to another, and seeing the frequency of co-occurrence in two natural groups, [24]. This analysis therefore is used to establish the causal relationships between variables explored.

Survey method of data collection was used as a method of collecting information by interviewing or administering a questionnaire to a sample of individuals[25]. Therefore this study involved collecting primary data from the teachers about technological factors affecting information and communication technology adoption in teaching and learning using questionnaires, observation and interview schedules as they are the key players in adoption of ICT in teaching process. The secondary data was collected from literature review from the internet, journals and relevant books.

4.2 The Location of the Study
The study was carried out in Githunguri sub-County, Kiambu county- Kenya approximately 25 kilometers from Nairobi county- Kenya. Investment in education includes both the private and public primary schools. There is fair infrastructure development such as good roads, communication which includes a local radio station, electrification etc. These make the setting accessible and permits instant rapport with the respondents. No similar study has been carried out in the setting and thus convenience in this location justifies why study this area.

4.3 The Target Population
In Githunguri sub-County there are 32 public secondary schools. These schools were considered because there are schools of all categories with teachers from all levels of education and regional backgrounds. Schools in this area have got different level of resource like ICT laboratories ranging from those that have to those who do not have. See Appendix 9 target population.

4.4 Sample Design and Sampling Procedures
A sample design which is an explicit plan was determined before any data were collected for obtaining a sample from the population[26], the statement about the sample should be true in relation to the population and for descriptive study 10% of accessible population is enough[27]. Given that the target population is heterogeneous due to the nature of the schools in the region. Purposive sampling was used to capture sample schools and teachers whom the study felt that they have required information. 16 schools gave a sample size representing 50% of the total population. A sample size for the study was calculated using the formula for sample size determination for population less than 10,000:

\[n_f = \frac{n}{1 + \frac{n}{N}} \]

\[n = \frac{394}{1 + 394} \]

Where: nf = the desired sample size (when the population is less than 10,000),

n = the desired sample size (when the population is more than 10,000)

N = the estimate of the population size.

Figure 1: Conceptual Framework (Source: Researcher 2014)

Figure 2 Formula for sample size determination<
10,000(Source: Researcher 2014)
Using the above formula \(nf= \frac{384 \text{Teachers} }{(1+384 \text{Teachers}) \times 964 \text{ Accessible Teachers}} \), \(=274 \) Teachers.

There two County schools, one boys school and the other girls’ school. The eight sub county boarding schools include four boys’ school and four girls’ schools. The two sub county schools included in the sample; in the sub county boarding category, were sampled to represent each gender. The rest were sampled from the mixed boarding/day and day schools as outlined in the sample grid. Four subject teachers were randomly picked to be the respondents in each sample school and all principals from sampled school were targeted for interview to represent each category of schools. This gave a total of 274 respondents.

The data collection instrument ought to be varied. The study used formulated questions targeting a number of sample groups. The questionnaire entailed relevant questions to the study of interest. The sampled group was expected to respond to the questions in reference to the options given. The purpose of using this method was to attain records that can be used in future for references and easy access to details that call for less effort. One of the limits accompanying this method was that it could not serve the blind and those who cannot read at all.

The study used the interview schedule involved going to the field interviewing the target population. The advantage of this method was that the interviewer was able to get immediate feedback from the interviewees. In addition, this method was intended to accommodate face to face communication which involved eye contact and this enhanced the researcher’s certainty on the feedback reliability.

As it cannot be assumed to be enough; observation had to be scheduled to observe the way learning was carried out in different activities in the school. These include how they do their examinations, how they research for information store and how they retrieve the information. This method allows the researcher to get the real picture of the study. A camera was used to get sample pictures. This case study attempted to obtain information about ICT from schools and other stakeholders such as ICT champions, education officers and teachers among others, using purposive or judgmental sampling method. A sample frame was used, and Brook define it as a complete listing of all the sampling units or elements that can adequately represent that population[28]. However, Brook noted that there is no any complete official list that can adequately satisfy a study as sample frame[28]. In such instances, the study develops a sample frame that produces a representative sample of the population elements with the desired characteristics of attributes.

The study chooses the subjects who are most advantageously placed or in the best position to provide the information required. Therefore the research focused on all the 32 schools registered as examination centers for K.C.S.E by Kenya National Examination Council (K.N.E.C), in Githunguri sub-county in the year 2012.

4.5 Data Collection Tools and Techniques

Piloting was done to test the certainty of the research instruments before the real life undertaking. While undertaking the study, alongside using emails, assistance was sought from a group of youths to issue out the questionnaires to the target population. Using a phone a brief description could be given, on what was expected to be done with the issued questionnaires which were collected after three days. The study aimed to interview the whole target group on the first day, the study and the companion team were expected to follow the organized timetable to collect the data, in addition to using the two methods to collect the data the study involved taking notes hand in hand with the photographs on observations where allowed. To complete this process it took about twenty working days.

4.6 Research instruments

Research instruments are tools that were used in the study to collect data from the sampled respondents[29]. The questionnaires were used to collect data from the teachers while the principals were interviewed. Observation helped to gather crucial information that could not be obtained through interviews and questionnaires. The questionnaires were used to collect bio-data of the teachers, background information of the schools and gather information on the use of ICT in teaching and learning. Interview guide was used to gather information from the principals to establish the ICT policies used in their schools.

5. DATA ANALYSIS RESULTS

5.1 Regression Results

Regression coefficients representing the mean change in the response variable for one unit of change in the predictor variable while holding other predictors in the model constant was used, asthis statistical control that regression provides is important because it isolates the role of one variable from all of the others in the model[30]. On the other hand the p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (< 0.05), indicates that you can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to the model because changes in the predictor’s value are related to changes in the response variable[30]. Conversely, a larger (insignificant), p-value suggests that changes in the predictor are not associated with changes in the response[30].

The explanatory variables that were considered as seen in table 1; included use of reliable internet connectivity, Perceived Complexity, Compatibility, Technical Support, Web Techno, M-Learning, knowledge Skills, Resources and ICT Policy. These predictors as explained by Jim Frost [30] are therefore considered significant because their p-values are not greater than the alpha level of 0.05. The results of the logistic regression are presented in Table 1
Table 1: Logistic Regression summary (Source: Researcher 2014)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std Error</th>
<th>z-Value</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Connectivity</td>
<td>0.9700780</td>
<td>0.1388671</td>
<td>-6.396396</td>
<td>0.0000000</td>
<td>0.7042053</td>
<td>1.35771349</td>
</tr>
<tr>
<td>Perceived Complexity</td>
<td>0.9890612</td>
<td>0.1135968</td>
<td>8.6806798</td>
<td>0.1135968</td>
<td>0.7584203</td>
<td>1.56789694</td>
</tr>
<tr>
<td>Compatibility</td>
<td>0.9520808</td>
<td>0.1196817</td>
<td>7.8906757</td>
<td>0.0477801</td>
<td>0.8495145</td>
<td>1.13447162</td>
</tr>
<tr>
<td>Technical Support</td>
<td>0.9490347</td>
<td>0.092848</td>
<td>13.2897025</td>
<td>0.0136970</td>
<td>0.7199305</td>
<td>1.52902272</td>
</tr>
<tr>
<td>Web Training</td>
<td>0.9914397</td>
<td>0.2118082</td>
<td>9.3017025</td>
<td>0.0136970</td>
<td>0.7199305</td>
<td>1.52902272</td>
</tr>
<tr>
<td>M-Learning</td>
<td>0.9571529</td>
<td>0.1708989</td>
<td>4.1908767</td>
<td>0.0136970</td>
<td>0.7199305</td>
<td>1.52902272</td>
</tr>
<tr>
<td>Knowledge Skills</td>
<td>0.9890612</td>
<td>0.1135968</td>
<td>8.6806798</td>
<td>0.1135968</td>
<td>0.7584203</td>
<td>1.56789694</td>
</tr>
<tr>
<td>Resources</td>
<td>0.9920259</td>
<td>0.0960491</td>
<td>14.223459</td>
<td>0.0136970</td>
<td>0.7199305</td>
<td>1.52902272</td>
</tr>
<tr>
<td>Policy</td>
<td>0.9999366</td>
<td>0.0989566</td>
<td>12.669565</td>
<td>0.0136970</td>
<td>0.7199305</td>
<td>1.52902272</td>
</tr>
</tbody>
</table>

Number of observations: 26, Pseudo R^2 = 0.89, Life Goodness of Fit = 0.900

Log Likelihood (LR), tests gave a value of 46.21 which was statistically significant at 1% level. This implies that the overall logit model that was estimated was statistically significant, that is, there was a significant relationship between the log of odds ratio and the explanatory variables.

From Table 1, the Pseudo R squared of the regression was 0.90, which implies that the included variables explained only 90 per cent of the variations in the adoption of the ICT in secondary teaching. The remaining 10 per cent was explained by other explanatory variables not included in the model. The coefficient of use of reliable Internet Connectivity in secondary teaching was positive (0.97007789), and significant (p = 0.021). This implied that the adoption of ICT in secondary teaching is related to the complexity of adopting ICT teaching. The coefficient of the perceived complexity of adopting ICT in teaching was positive (0.98646162), and significant (p = 0.013). This implied that the adoption of ICT in secondary teaching is related to the complexity of adopting ICT in teaching.

The coefficient of perceived Compatibility of the ICT facilities necessary for ICT adoption was positive 0.952206988, and significant (p = 0.042), this implied that ICT adoption was proportional to the perceived Compatibility of the facilities necessary for ICT adoption in teaching. This means that the schools that perceive the Compatibility of the facilities necessary for ICT adoption to be incompatibility are less likely to adopt the ICT than the school that perceive the Compatibility of the facilities necessary for ICT adoption.

The coefficient of Technical Support was provided the likelihood of ICT adoption is higher than in the schools where the Technical Support is lacking. The coefficient of ICT Policy on adoption of ICT in secondary teaching was positive (0.999935664), and significant (p = 0.000). This implied that the adoption of ICT in secondary teaching is highly dependent on ICT policy for its adoption in secondary teaching.

However, there are factors which determine the level of adoption of ICT in secondary teaching, and some of which were considered including, level of use of Web Technology which had a positive coefficient of (0.963430197), and significant (p = 0.036). This implied that the level of adoption of ICT in secondary teaching is related to the level of use of Web Technology in secondary teaching. The coefficient of level of available ICT resources was positive (0.995023563), and significant (p = 0.004). This implied that the level of adoption of ICT in secondary teaching is related to the level of available ICT resources in secondary teaching.

Finally, the coefficient of level of use of M-Learning was positive (0.951715284), and significant (p = 0.048). This implied that the level of adoption of new technologies in secondary teaching is related to the level of available resources knowledge & skills and governing policy in secondary teaching.

Policy as a moderating factors demonstrated its effect on other technological factors in adoption of ICT.

The table below shows the results of a correlation test between ICT adoption independent variables and ICTAdoption [dependent variable] in the absence of ICT policy in Education.

Table 2: Regression with Varying Policy Value (Source: Researcher 2014)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std Error</th>
<th>t-Value</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Connectivity</td>
<td>0.16781</td>
<td>0.25557</td>
<td>0.65194</td>
<td>0.00000</td>
<td>1.05302</td>
<td>1.80607</td>
</tr>
<tr>
<td>Perceived Complexity</td>
<td>0.95992</td>
<td>0.09620</td>
<td>16.7907</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Compatibility</td>
<td>0.98999</td>
<td>0.11968</td>
<td>8.49067</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Technical Support</td>
<td>0.94903</td>
<td>0.09284</td>
<td>13.2897</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Web Training</td>
<td>0.99144</td>
<td>0.21181</td>
<td>9.3017</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>M-Learning</td>
<td>0.95715</td>
<td>0.17089</td>
<td>4.19087</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Knowledge Skills</td>
<td>0.98999</td>
<td>0.11968</td>
<td>8.49067</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Resources</td>
<td>0.99203</td>
<td>0.09620</td>
<td>14.22346</td>
<td>0.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Number of observations: 26, Pseudo R^2 = 0.89, Life Goodness of Fit = 0.900

The results on Table 2 above show that, in the absence of policy, ICT adoption is negatively influenced by the independent variables. For instance in the presence of the policy, Internet Connectivity has a coefficient of 0.97007789 and a coefficient of 0.87891 in absence of the policy, giving a difference of -1. Meaning that in addition to provision of ICT technical support there is need for a reliable ICT policy.

The table below shows the results of a correlation test between ICT adoption independent variables and ICT adoption [dependent variable] in the absence of ICT technical support in Education.
Table 3: Regression with Varying Technical support (Source: Researcher 2014)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-Value</th>
<th>p-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>0.96739</td>
<td>0.01538</td>
<td>64.2311</td>
<td>0.0000</td>
<td>0.93603</td>
<td>0.99889</td>
</tr>
<tr>
<td>Competency</td>
<td>0.95322</td>
<td>0.00754</td>
<td>126.8711</td>
<td>0.0000</td>
<td>0.93878</td>
<td>0.96767</td>
</tr>
<tr>
<td>Compatibility</td>
<td>0.91846</td>
<td>0.00567</td>
<td>65.7900</td>
<td>0.0000</td>
<td>0.89339</td>
<td>0.94353</td>
</tr>
<tr>
<td>MacIntosh</td>
<td>0.59189</td>
<td>0.15594</td>
<td>3.80685</td>
<td>0.0500</td>
<td>0.39012</td>
<td>0.79365</td>
</tr>
<tr>
<td>Knowledge</td>
<td>0.36835</td>
<td>0.00778</td>
<td>23.7685</td>
<td>0.0000</td>
<td>0.29150</td>
<td>0.44521</td>
</tr>
<tr>
<td>Resource</td>
<td>0.09180</td>
<td>0.00884</td>
<td>12.4493</td>
<td>0.0000</td>
<td>0.06494</td>
<td>0.11864</td>
</tr>
<tr>
<td>Policy</td>
<td>0.09430</td>
<td>0.00894</td>
<td>11.0098</td>
<td>0.0000</td>
<td>0.07630</td>
<td>0.11234</td>
</tr>
</tbody>
</table>

No. of observations: 32, P-value 0.00, R^2 = 0.948, Prob. Chi.: 0.008

The results on Table 3 above show that, in the absence of technical support, ICT adoption is negatively influenced by the independent variables. For instance in the presence of the ICT technical support, level of Internet Connectivity has a coefficient of 0.97007789 and a coefficient of 0.96739 in absence of the ICT technical support, giving a difference of -0.00268789, hence lower level of ICT adoption. This indicates that even though a good policy was provided there is need for a reliable ICT technical supporting education.

5.2 Summary of data analysis

Data collected was analysed, summarised and displayed using tables, charts and textual explanation. Variables tested and analysed were identified as informed by the literature. Dependent variables, independent variables and moderating variables were tested for reliability of presentations of the findings of the study on all the parameters included to determine the adoption of ICT in secondary education. Data collected was analysed. All identified variables as informed by review of literature were tested and results analysed. A regression test was done, a statistical control, which regression provides is important because it isolates the role of one variable from all of the others in the model[30]. On the other hand the p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (< 0.05), indicates that you can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to the model because changes in the predictor’s value are related to changes in the response variable. In addition another test was done on the moderating variables for moderation purpose.

5.3 Conclusion on data analysis

From the analysis of data collected the study found that technological support was another very important moderating variable; “intervening variable” which together with policy which is a moderating variable determines adoption of ICT in teaching and learning. From the analysis it was noted that for instance in the presence of the ICT technical support, level of Internet Connectivity has a coefficient of 0.97007789 and a coefficient of 0.96739 in absence of the ICT technical support, giving a difference of -0.00268789, hence lower level of ICT adoption. Findings of this study are presented using tables, percentages, pie charts and textual explanations to justify discussion, conclusion and recommendation of this study.

Findings of chapter four were used to justify the conclusions made in chapter five. The findings of this study were presented using tables, percentages, pie charts and textual explanations used to inform chapter five for discussion and recommendations.

6. Discussion of Data Analysis Results

6.1 Response Rate

Table 4: Respondents summary (Source: Researcher 2014)

<table>
<thead>
<tr>
<th>Category of School</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boarding schools</td>
<td>8</td>
<td>25%</td>
</tr>
<tr>
<td>Boarding / Day School</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Day Schools</td>
<td>18</td>
<td>56%</td>
</tr>
<tr>
<td>Total Response</td>
<td>28</td>
<td>87%</td>
</tr>
<tr>
<td>Non Respondent</td>
<td>4</td>
<td>13%</td>
</tr>
<tr>
<td>Total population</td>
<td>32</td>
<td>100%</td>
</tr>
</tbody>
</table>

As presented in Table 4 the total response rate was 87%, which compares well with the response rate of 70 % recommended by [31]. The response rate shown are explained by the nature of the sensitivity of the information sought from respondents, as most of them found it right to share their views and experiences comfortably.

6.2 Level of Internet Connectivity

Technology provides hardware, software and interconnectivity like, The East African Submarine Cable System (EASSy), which is an infrastructure project, which was initially supported by the World Bank. It is a fiber optic cable intended to connect the six sub-Saharan African countries, including Kenya, necessary for ICT adoption, mainly the availability of internet connection that is used to interconnect the schools to the internet, as a fundamental factor that is expected to influence ICT adoption in secondary school teaching.

From this study table 4.2 above 72% of the respondents indicate that teachers were un-able to reliably access and use internet connection in their teaching as one way of adopting ICT in teaching. On the contrary, 12% of the respondents implied that availability and access to reliable internet connection motivated their schools to adopt ICT. From the observation 72% of the school had no installed...
internet devices; the respondents interviewed explained that the cost of internet installation and charges is high. These findings therefore explain the fact that availability of reliable and fast internet connection motivates a school to adopt ICT in teaching. In support of these findings, previous studies show that the state of internet connectivity in Kenya is so poor that 75% of the learners prefer cyber cafés to provide reliable internet connectivity over those available in institutions of learning[32]. The internet basically supports sharing of resources over the network; hence lowering the cost of buying sharable resources facilitates communication between parties who are geographically apart and thus improved efficiency. Numerous studies have shown that reliable internet connectivity and access is paramount to adoption of ICT in teaching, in that internet provides reference resource Murphy as cited reference [33], and also provides reliable means of communication amongst the learners and teachers. In addition, studies show that, education and technology are nicely interwoven now days and almost every teacher has a few preferred technology tools, that make doing his or her job and connecting with students a little bit easier and more fun for all involved, in deed there are at least 50 web-tools for teachers[34]. Despite that 69% of interviewed respondents indicating no idea on freely available web tools for secondary teaching. Internet provides access to numerous web-tools for teachers, which are reliable and effective technologies useful in increasing student motivation and facilitate clear thinking and development of interpretation skills with data[33].

6.2.1 Level of use of Web technologies
ICT resource accessibility via the internet provides a great support to adoption of ICT in teaching. In conjunction with access to reliable internet connection, web technology provides resources which can be accessed and shared by individuals who are geographically apart via internet connection. Lack of access is the principal obstacle and those different obstacles to using ICT in teaching were reported by teachers, e.g. lack of computers and internet connection[35]. Sharing of resources lower the cost of purchasing shared resources and maximizes production from available shared resources. Findings of this study observed that 76% of the respondents unlike the 20% of respondents are un-able to adopt use of web technologies in teaching. From the observation 72% of the schools had not installed internet devices and the respondents interviewed explained that the cost of internet installation and charges is high, thus no access nor use of web-technologies. In ability to access and use web technology tools for teaching hinder adoption of ICT in teaching, these findings are supported by previous study indicating that learning institutions like universities in Kenya are still at low levels of internet access and thus hindering use of web technologies[32].

6.2.2 Level of perceived complexity and Compatibility challenges
Many stakeholders of education find it difficult to adopt ICT in teaching due to various challenges; some could argue that they are not able to combine their teaching methods with the ICT skills they have. Others find it tricky to convert their teaching material to e-material. The findings of this study figure 3 above, show that a total of 57% respondents were of the view that adopting ICT technology was complex to understand and use, while 34% were of the contrary opinion. Similarly as observed from figure 3 that 83% of the respondents indicated that their schools had not adopted ICT, while 15% had adopted. This high percentage of respondents with the perception that the ICT was complex could possibly explain the low level of ICT adoption by schools in Kenya. 16% of interviewed respondents explained that teachers argue that it is time consuming to prepare electronic material for use in teaching. They also felt that incase of computer system failure in the process of teaching a lot of time is wasted trying to amend it hence fearing to use ICT in lesson work. They also indicated that schools lack technical support for ICT adoption; in additional from observation 0% of schools had a computer technical assistant. Findings of this study supported by a previous study which identified five technological attributes influencing the decision to adopt an innovation [2]. Technology characteristics influence the diffusion processes of an innovation and are significant factors impacting an innovation adoption. Evidence suggests that innovation attributes: relative advantage, compatibility, complexity, trial-ability and observables as perceived by individuals influence the rate of adoption [2]. Variance in ICT use can be explained by effects of technology resources and computer attributes. Relative advantage, compatibility, ease of use and observables are innovative educational and administrative uses [36]. In addition, relative advantage, complexity, observables, and image are the most significant factors in predicting student teachers’ intentions to make use of technology[37]. Finally “innovations that offer advantages, compatibility with existing practices and beliefs, low complexity, potential trial-ability and observables have a more widespread and rapid rate of integration” [38].

Figure 3: Perceived complexity and Compatibility challenges (Source: Researcher 2014)
6.2.3 Knowledge and skills

As observed from figure 4, that 53% of the respondents indicated that their school teachers were lacking ICT knowledge and skills, competent enough to adopt use of ICT in teaching, while 25% were of the opinion that they have knowledge and skills useful in adoption of ICT in teaching. 22% were missing and or uncertain whether they are competent enough in technology adoption, implying that they do not know what it requires to adopt ICT in teaching. This shows that the ICT knowledge and skills are low in the secondary school labor force, as justified in the reviewed literature on (barriers) that discourage the use of ICT by teachers. The factors that prevent teachers from ICT use can be categorized into: teacher level, school-level and system-level barriers. Teacher-level barriers include lack of teacher ICT skills; lack of teacher confidence; lack of pedagogical teacher training; lack of follow-up of new and lack of differentiated training programs[39].

Inadequate training, lack of access to computer laboratories, lack of technical support and inadequate technology resources are factors discouraging teachers from implementing ICT into their teaching[40]. Lack of teachers’ time to learn new skills, old ICT equipment, large classes, number of computers available for pupils’ use, lack of technical and pedagogical support and lack of collaboration among teachers were constraints to teachers’ confidence and competence in the use of ICT[41]. Understanding the extent to which these barriers affect individuals and institutions may help in deciding how they are to be tackled [42].

6.2.4 Availability of ICT resources

As observed from figure 5, that 53% of the respondents indicated that their schools had no ICT resources to adopted ICT in teaching, while 25% had the resources to adopt ICT in teaching, although they also could not effectively and reliably adopt ICT in teaching due to lack of reliable mentors on the same. From the interview, principals argued that even when they buy ICT resources they find a few teachers using them reliably, arguing that they need some technical assistance on technology adoption. This shows that the ICT resources for adoption of ICT are low in the secondary schools in Githunguri sub-county, as justified in the reviewed literature. the school-level barriers comprises absence of ICT infrastructure; old or poorly maintained hardware; lack of suitable educational software; limited access to ICT; limited project-related experience; lack of ICT mainstreaming into school’s strategy and the system-level barriers include rigid structure of traditional education systems; traditional assessment; restrictive curricula and restricted organizational structure.

Teachers mainly use technology to prepare lesson notes and assessments instead of improving students’ performances. Some barriers to the use of technology include congested classes, insufficient training, inadequate technical and pedagogical support, rigid school syllabi, inadequate motivation, lack of strong leadership and inadequate cooperation among teachers[43]. Finally lack of access, time pressure, lack of mentors and opportunities for training have effect on teachers’ use of ICT in teaching and learning[44].

6.2.5 Lack of technical support

Lack of technical support posesdifficulties in adoption of ICT in teaching, as observed in figure 6 above, a total of 57% respondents were of the view that adopting ICT technology was complex to understand and use, while 34% were of the contrary opinion. Some teachers argued that they lack the skills to intertwine the technology with their traditional methods of teaching. This high percentage of respondents with the perception that the ICT was complex explains the low level of ICT adoption by schools in Kenya.In line with this study done in Turkish education system reported that the technology integration processes in the Turkish education system, provide schools with hardware and internet connections, it is also crucial to provide the schools with technical
support with regard to repair and maintenance for the continued use of ICT in schools[45].

Both good technical support in the classroom and whole-school resources are paramount for teachers to overcome the obstacles preventing them from using ICT[46]. For both primary and secondary teachers, one of the top obstacles to ICT adoption in education is lack of technical assistance[47]. Nevertheless breakdown of a computer causes interruptions and if there is lack of technical assistance, then it is likely that the regular repairs of the computer will not be carried out resulting in teachers not using computers in teaching[48]. The effect is that teachers will be discouraged from using computers because of fear of equipment failure since no one would give them technical support in case there is a technical problem.

6.2.6 Level of use of Mobile phone

Mobile phone as a form of microcomputer has vast capacity to enhance reliable communication and even supporting data manipulation process [34], showed that yet as with anything related to technology, new tools are hitting the market constantly and older ones rising to prominence, broadening their scope, or just adding new features that make them better matches for education, which can make it hard to keep up with the newest and most useful tools even for the most tech-savvy teachers. In this study different mobile phone users had different perception on mobile phone use in teaching.

As observed from figure 7, that 72 % of the respondents indicated that their schools do not use mobile phone in teaching, while 13% do use. From the observation no teacher was found using a mobile phone in the teaching process. This shows that the use of mobile phone in teaching is low in the secondary school in Githunguri sub-county, despite the fact that mobile phone technologies provide different types of connectivity access that use the infrastructure of mobile telephone networks. These allow for voice and data communication via small hand-held devices or larger mounted devices, both of which can be connected to a computer or a computer network. There were several developments with these technologies during 2006 and 2007. Celtel and MTN are already providing mobile Internet technologies in Zambia. General Packet Radio System (GPRS), provided and further introduced a more advanced technology called EDGE which is faster than GPRS. This requires gadgets to be used to connect the Personal Computer to the mobile services via USB and PC cards.

The explanatory variables that were considered include use of reliable internet connectivity, perceived complexity, compatibility, technical support. However, as observed from figure 8, it was noted that 83 % of the respondents indicated that their schools had not adopted ICT, while 15% had adopted. In line with the questionnaire 80% of the respondents interviewed knew the importance of adopting ICT, but they explained lack of ICT technical support as a major challenge.

6.2.7 Adoption of ICT in secondary teaching

In reference to the predictor variables tested in the regression test in chapter four above, it was noted that absence of one predictor reduced the level of adoption of ICT in secondary education and hence the need to provide for all predictors, so as to achieve a great level of adoption of ICT in secondary education. Otherwise this justifies the reason for 83% of respondents not adopting ICT in secondary education.

6.2.8 ICT Policy in Education

From the data collected 47% of respondents seemed not to be aware of the support given by ICT policy on ICT adoption in secondary teaching while 22% of respondents agreed that ICT policy supports adoption of ICT in secondary teaching and finally 31% disagreed, to have enjoyed any support from ICT policy on adoption of ICT.
in teaching. From the 47% of respondents who seemed not aware of ICT policy, some argued that they have never come across any publication about the school policy on ICT or engaged in any forum where ICT policy is mentioned other than news headlines in the local Television. From the interview, the principal response showed some knowledge on availability of the policy.

6.3 Conclusion

To build on confidence, competence in knowledge and skills for ICT adoption, professional development has to be emphasized. For reliable accessibility of ICT resources internet connectivity needs to be improved, for this can support access to resources via network as well as ensuring efficient sharing of internet resources. With this effect to realize the goal of the Kenya Education Network (KENET), which is to “establish sustainable communication and networking among educational institutions in Kenya that will facilitate wide use of Internet technology in teaching, research, and sharing of other information resources to the general populace at affordable cost.”

The findings of this research indicates that various technological factors are important determinants of ICT adoption in teaching as supported by past studies, which shows that there is a significant relationship between adoption and technological factors [7], thus this study recommends that the government should adopt a more reliable model, which should help to harmonize integration of technological factors in ICT adoption in teaching, the model clearly point out areas of concern in the effort of ICT adoption in teaching as depicted in figure 13.

Implementation of Kenya national ICT policy promulgated in January 2006 which aims to “improve the livelihoods of Kenyans by ensuring the availability of accessible, efficient, reliable and affordable ICT services, require to work hand in hand with a reliable ICT adoption model in teaching as shown in figure 13 in order to enjoy a great success in its implementation.

There is need to promote a mentorship program to propagate adoption of ICT in teaching, facilitate more access to ICT resources and internet connectivity as well as emphasizing on training related to use of ICT in teaching, this should go hand in hand with supporting teachers in part-time, distance and e-learning as it is in line with the ICT policy in place. This is in line with findings of previous study that claimed that lack of access, time pressure, lack of mentors and opportunities for training have effect on teachers’ use of ICT in teaching and learning [44].

As seen from the discussion above the study proposed and developed an ICT adoption model for teaching as supported by a previous study by KhalidAbdullah Bingimlas, who claims that no component in itself is sufficient to produce good teaching[33]. However, the presence of all components increases the likelihood of excellent integration of ICT in learning and teaching opportunities.

6.3.2 The proposed ICT Adoption Model

Proposed Education ICT Adoption Model integrates Technical Support Team (TST) as the intervening technological factor in ICT adoption, integration and implementation in teaching and learning process. TST together with a policy which is a moderating variable determines adoption of ICT in teaching and learning. TST provides technical documentation used to guide teacher trainers on how to develop subject content and pedagogical content. TST provides and or customizes ICT tools for use by teachers of various subjects. TST guides the policy makers on how to develop Specific, Measurable, Attainable, realistic and Time bound (SMART) policy. TST are responsible of lowering ICT adoption complexity by improving the tools available and providing required skills. TST redesign, develop and customize ICT educational tools for ease of compatibility in teaching and learning.

The Education ICT Adoption Model

Finally, of key importance from this study is the need for technological support team in schools. The team should provide technical support, to the teachers who adopt and integrate ICT in their day to day teaching process. In line with this a previous study implied that there is lack of teachers’ preparedness for a class lesson due to lack of expertise in using ICT as well as lack of technical support in schools[21]. Therefore it is justified for this study to ask: “why is it that; it seems justifiable for schools to have laboratory technicians for other sciences and yet no consideration for computer laboratory technicians in schools?”

6.4 Recommendation

1. Testing and adoption of the proposed ICT adoption model developed above.
2. Education stakeholders to recognize and introduce computer laboratories technicians in schools liaising with computer scientist in the country.
3. This study recommends for testing of the model designed for integration of role players in ICT adoption in secondary education.
4. Further studies on how to better the ICT adoption model designed in this study, by integrating other components of ICT adoption models found in other models.

5. A study to find out the relationship between technological factors and adoption of ICT in secondary education.

6. Mentorship project on ICT adoption to reduce perception that ICT adoption is Complex

7. Teachers Service Commission (TSC) should also join in supporting teachers’ part-time, distance and e-learning as it is in line with the ICT policy in place so as to attain vision 2030 as stipulated.

8. The ministry of education to adopt this model to facilitate and evaluate level of ICT adoption in secondary teaching.

9. These argument provide basis to argue that there is need for model school, an addition subject on ICT adoption by teacher trainer

10. Future research to find out emerging technological factors affecting ICT adoption in teaching.

11. Extend the research even to the entire country of Kenya and abroad.

12. Find an answer for “why that it seems justifiable for schools to have laboratory technicians for other science laboratory and yet no consideration for computer laboratories in schools?”

References

[54]. J.P. Spillane, "External Reform Initiative and Teaching Effort to Reconstruct their Practice Mediating Role of Teachers' Zones of Enactment,"
[116].J. Afe, Reflections on becoming a Teacher and th Challenges of a Teacher Education. presented at Inaugural Lecturer Series 64 of the University of Benin, 2002.

Author Profile

Mr. Gakenga Bernard Gathogo is a Computer Studies Educator and a director of Life is Digital Society Kenya. He holds a Master of Science in Information Technology and a BED from Mount Kenya University. He is an upcoming scholar with research interests mainly in Software Engineering, Databases, Artificial Intelligence, Online-Learning, Information Systems, and Computer Security. He has presented a conference paper on Integrated ICT Adoption Model- IIAM.

Dr. Joyce W.Gikandi is the head of E-learning and the director of postgraduate studies in Mount Kenya University (Nairobi Campus). She holds a PHD in E-learning. She has strong interests in E-learning and information Systems. She has widely published and presented papers in conferences mostly on areas to do with online learning.

MR. John Wachira Kamau is a lecturer at Mount Kenya University. He holds a MSC. IT and is currently a third year PHD student at the University of South Africa (UNISA). He has strong interests in Databases, artificial intelligence, software engineering and information Systems. He has widely published and presented papers in conferences mostly on areas to do with Open Source Software adoption (OSS).