Traffic Flow Modeling for Heterogeneous Conditions on Urban Road - A Case Study of selected stretches of Ahmadabad city.

A.A.Amaliyar¹, Dr. H.R.Varia²

¹Gujarat Technological University, Civil Engineering Department, Tatva Institute of Technological Studies Modasa, Gujarat, India
²Gujarat Technological University , Civil Engineering Department, Tatva Institute of Technological Studies Modasa, Gujarat, India

Abstract: Knowledge of fundamental traffic flow characteristics and vehicle behavior are essential for the operation of transportation system. The fundamental characteristics of speed and flow have been studied. An appropriate methodology was adopted to collect data. The methodology for choice of best fitting curve to the observed data has also been described. The result of the study has shown that, the Speed-Flow-density of urban heterogeneous traffic can be modeled for vehicles over a wide range of traffic flow. Speed-flow-Density curves for a selected roads facility were plotted.

Keywords—flow modelling, Speed-flow-density relationship

1. INTRODUCTION
In developing country like India, road traffic in general & urban roads traffic in particular, is highly heterogeneous include vehicles of widely varying characteristics the vehicles share the same road space without separation. Basic knowledge of traffic flow characteristics like traffic volume under such heterogeneous conditions is fundamental traffic volume is basic variable in planning, designing, and operation of roadway systems. The roads of India are a perfect example of the dominant economic difference and vehicle like motorcycle, auto rickshaw, bus, minibus, truck, moped, car, bicycle, tractor, non motorized can be seen sharing the same road space. The traffic condition of Ahmadabad city is highly heterogeneous in nature and vehicles do not follow lane discipline and not follow signal or sign, which makes it difficult to study and analyze traffic flow characteristics. To understand traffic flow relationships have been established between the main characteristics: speed, flow, density.

2. BASIC FORM OF SPEED-FLOW-DENSITY RELATIONSHIP
Knowledge of relationship between speed, volume and density is very important in traffic studies. In this the speed-volume relationship is used to find the capacity of roads.

A. Speed-density relationship
With increase in density the speed decreases. When there is no vehicle (density=0), the speed is maximum. This speed is called “Free speed”. At very high density, the vehicles approach zero speed. This density is called “Jam density”.

B. Speed-Flow relationship
At very low speeds the volume would also be low. With increasing speed, traffic volume also increases up to a certain limit, as headway initially decreases. But as the speed further increases the spacing between the vehicles increases and becomes so large that volume decreases. There is an optimum speed at which the flow is maximum.

C. Flow-density relationships
As the density increases from zero, volume increases up to the point of critical density . the density corresponding to maximum flow. It is called “Optimum density”. There after volume decreases as density continues to increases to a maximum value known as “Jam density” when all vehicles are stopped. As density increases the speed of vehicle is reduced, reducing the flow, till it reaches jam density when there is no movement or flow.

Figure 1 Fundamental diagram of Speed - Flow - Density

3. METHODOLOGY & DATA COLLECTION
The study has been conducted by the Department of Civil Engineering, Tatva Institute of Technological Studies,
Modasa. For assessing the existing traffic condition in Ahmadabad City. To study the effect of moving vehicle on the traffic flow characteristics the traffic volume count survey are carried out with the help of video graphy on selected stretches of different stretch lengths during time period.

A. Road Geometry

Table 1: Geometry of Different Stretches

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Road Name</th>
<th>Number of lane(m)</th>
<th>Width (m)</th>
<th>Length (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Railway station Kalupur To Sakar Bazar</td>
<td>Three lane undivided one way</td>
<td>12</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>Sakar Bazar To Railway Station Kalupur</td>
<td>Three lane undivided One way</td>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>Kalupur police Station To Gangaram Tower</td>
<td>Two lane undivided Two way</td>
<td>12</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>Gangaram Tower To Kalupur police Station</td>
<td>Two lane undivided Two way</td>
<td>11.70</td>
<td>420</td>
</tr>
</tbody>
</table>

B. Traffic Volume Survey

The most important data are generated through the modern survey techniques like traffic volume count at different stretches. The extent of variation of traffic flow was as curtailed by carrying out twelve hour (8:15:00 AM to 20:15:00 PM) working day counts on Study roads. The traffic volume is expressed as passenger car unit per hour (PCU/hour).

Table 2: Total Traffic volume at different stretches

<table>
<thead>
<tr>
<th>Road Name</th>
<th>2W</th>
<th>3W</th>
<th>CAR</th>
<th>BUS/TRUCK K</th>
<th>L.C.V</th>
<th>N.M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakar Bazar To Railway Station Kalupur</td>
<td>2272</td>
<td>3</td>
<td>1772</td>
<td>9</td>
<td>4092</td>
<td>1363</td>
</tr>
<tr>
<td>Railway station Kalupur To Sakar Bazar</td>
<td>2149</td>
<td>3</td>
<td>1419</td>
<td>2</td>
<td>4328</td>
<td>1280</td>
</tr>
<tr>
<td>Kalupur Station To Gangaram Tower</td>
<td>2008</td>
<td>0</td>
<td>8212</td>
<td>517</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Gangaram Tower To Kalupur Station</td>
<td>1896</td>
<td>1</td>
<td>7854</td>
<td>540</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

4. ANALYSIS OF COLLECTING DATA

Data collecting from volume count survey are Analysis and measure Space mean speed on selected stretches through every 20 second Flow count continuously and Density is measured through the equation (1). After completed Analysis developed Relationship of Speed-Flow, Speed-Density and Flow-Density. And choice of best fitting curve to the observed data, and develop Speed-Flow, Speed-Density, and Flow-Density model.

\[Q = K \times V \]

Where,

- \(Q \) = Traffic flow PCU/hour
- \(K \) = Density km/hour
\(V = \text{Speed PCU/km} \)

Classified Volume count and Space mean Speed is directly measured by video graphy and density measured from equation (1). Different stretches flow-speed-density relationship and its best fitting curves graphs are as under:

1. **Kalupur Railway Station To Sakar Bazaar**

 ![Figure 5 Flow-Density relationship at Kalupur railway station to Sakar Bazar](image)

 ![Figure 6 Speed-Flow relationships at Kalupur railway station to Sakar Bazar](image)

 ![Figure 7 Speed-Density relationships at Kalupur railway station to Sakar Bazar](image)

2. **Sakar Bazaar To Kalupur Railway Station (Dharmashala)**

 ![Figure 8 Flow-Density relationships at Sakar Bazaar To Kalupur Railway Station](image)

 ![Figure 9 Speed-Flow relationships at Sakar Bazaar To Kalupur Railway Station](image)

3. **Kalupur Police Station To Gangaram Tower**

 ![Figure 10 Speed-Density relationships at Sakar Bazaar To Kalupur Railway Station](image)

 ![Figure 11 flow-Density relationships at Kalupur Police Station To Gangaram Tower](image)

 ![Figure 12 Speed-Density relationships at Kalupur Police Station To Gangaram Tower](image)

4. **Gangaram tower to kalupur police station**

 ![Figure 13 Speed-Density relationships at Kalupur Police Station To Gangaram Tower](image)

 ![Figure 14 Speed-Flow relationships at Gangaram tower to kalupur police station](image)

 ![Figure 15 Speed-Density relationships at Gangaram tower to kalupur police station](image)
Figure 16 Flow-Density relationships at Gangaram tower to kalupur police station

BEST FITTING CURVE FROM ABOVE RELATIONSHIPS

1. Kalupur Railway Station To Sakar Bazaar

2. Sakar Bazaar To Kalupur Railway Station

3. Gangatower To Kalupur Police station

2. Sakar Bazaar To Kalupur Railway Station
5. CONCLUSION

SPEED-FLOW-DENSITY MODELING

<table>
<thead>
<tr>
<th>Route</th>
<th>Speed Flow-Density Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kalupur Police Station To Gangaram Tower</td>
<td>$y = 0.31$ + 0.69x $R^2 = 0.06$</td>
</tr>
<tr>
<td>2. Kalupur Police Station To Gangaram Tower</td>
<td>$y = 0.32 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4$ $R^2 = 0.34$</td>
</tr>
<tr>
<td>3. Gangaram Tower To Kalupur Police Station</td>
<td>$y = 0.33 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4$ $R^2 = 0.34$</td>
</tr>
<tr>
<td>4. Gangaram Tower To Kalupur Police Station</td>
<td>$y = 0.33 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4$ $R^2 = 0.34$</td>
</tr>
</tbody>
</table>

\[y = 0.31 + 0.69x \]

\[y = 0.32 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4 \]

\[y = 0.33 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4 \]

\[y = 0.33 + 0.69x + 0.60x^2 - 0.60x^3 - 0.60x^4 \]
From the survey we find out that our Indian traffic is heterogeneous traffic. It is concluded that existing equation of traffic stream are suitable for these Heterogeneous traffic. According to our complete analysis we found the traffic stream parameters. We get standard relationship between traffic stream parameters. We get a equation for heterogeneous traffic of Ahmadabad city.

References

