
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 410

Abstract
Software Life Cycle Development (SLCD) is a step by step
highly structured technique employed for development of any
software. This enables cost savings as organizations can reuse
and tailor SW products developed by other organizations free of
charge. SLCD allows project leaders to configure and supervise
the whole development process of any software. There are
various SLCD models widely accepted and employed for
developing software. The state-of-the-art and state-of-the-
practice are well established in open-source development and
SW product lifecycle management but they need to be applied
for public sector. SLCD models give a theoretical guide line
regarding development of the software. Employing proper
SLCD allows the managers to regulate whole development
strategy of the software. Each SLCD has its advantages and
disadvantages making it suitable for use under specific
condition and constraints for specified type of software only.
Developers employ SLCD models for analyzing, coding, testing
and deployment of software system. Software developed by
employing the suitable SLCD models is better performers in the
market when compared with their competitors. However,
without coordination SW products will evolve in an
uncontrolled manner. This article argues the importance of
application lifecycle management during the evolution of SW
products in the public sector’s open-source communities. A
model which guarantees the development and delivery (release)
teams engaged in some project have strong co-ordination and
collaboration leading to enhanced productivity, efficiency,
effectiveness and longer market life is developed. This can be
achieved by incorporating concept of Release Management with
basic SLCD phases. This article is also targeted at IT research
organizations and software companies that operate with public
sector organizations.

Keywords: Software Life Cycle management
Development system, software system, open source,
application life cycle management public sector and
software configuration management.

1.INTRODUCTION
The System Development Life Cycle framework provides
a sequence of activities for system designers and
developers to follow. The ideas about the software life
cycle development (SLCD) have been around for a long
time and many variations exist, such as the waterfall,
spiral, prototype and rapid application development model.
These variations have many versions varying from those
which are just guiding principles, to rigid systems of
development complete with processes, paperwork and
people roles. It consists of a set of steps or phases in which
each phase of the SLCD uses the results of the previous
one. A Systems Life Cycle Development (SLCD) adheres
to important phases that are essential for developers, such
as planning, analysis, design and implementation.

Currently Software is increasingly used in the private and
public sector. Similarities in public sector organizations
allow the reuse of SW products using open source like
characteristics. This enables cost savings as organizations
can reuse and tailor SW products developed by other
organizations free of charge. A number of system life cycle
development (SLCD) models have been created: waterfall,
spiral, prototype and rapid application development model.
Various software life cycle development models are
suitable for specific project related conditions which
include organization, requirements stability, risks, budget
and duration of project. One life cycle model theoretical
may suite particular conditions and at the same time other
model may also looks fitting into the requirements but one
should consider trade-off while deciding which model to
choose. A software life cycle model is either a descriptive
or prescriptive characterization of how software is or
should be developed. A descriptive model describes the
history of how a particular software system was developed.
Descriptive models may be used as the basis for
understanding and improving software development
processes. A prescriptive model prescribes how a new
software system should be developed. Prescriptive models
are used as guidelines or frameworks to organize and
structure how software development activities should be
performed and in what order. However, without
coordination these SW products will evolve in an
uncontrolled manner and they may not evolve in the
direction that best serves the needs of public sector
organizations. To enable this coordination, the Ministry of
Finance has started a research effort to define models for
the management of open-source like SW products’
evolution in the public sector (i.e. lifecycle management).
To present an abstract definition of software life cycle
development model (SLCD) incorporated with release
management. There are various SLCD models widely
accepted and employed for developing software. SLCD
models give a theoretical guide line regarding development
of the software. Employing proper SLCD allows the
managers to regulate whole development strategy of the
software. Each SLCD has its advantages and disadvantages
making it suitable for use under specific condition and
constraints for specified type of software only. We need to
understand which SLCD would generate most successful
result when employed for software development. There are
various SLCD models such as Waterfall, Spiral, Prototype,
Incremental and model etc. The purpose of this article is to
describe the models and discuss in more detail the model
that was identified as having the most potential for piloting
SW product lifecycle management in the public sector in
future. Furthermore, the article aims to encourage scientific

Development of Software Lifecycle Management

Deepak Kumar

Assistant Professor, Department Of Computer Science And Engineering, Guru Gobind Singh Educational Society’s
Technical Campus, Bokaro Steel City, India

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 411

and professional discussion about the community-based
management of open-source software in public sector.

2.SOFTWARE SYSTEM RELATED WORK
WHAT IS SLCD
The systems life cycle development (SLCD),also referred
to as the application development life-cycle, is a term used
in systems engineering, information systems
and software engineering to describe a process for
planning, creating, testing, and deploying an information
system.

Requirement Analysis
Requirements analysis, also called requirements
engineering, is the process of determining user
expectations for a new or modified product. These features,
called requirements, must be quantifiable, relevant and
detailed. In software engineering, such requirements are
often called functional specifications. Requirement
analysis involves frequent communication with system
users to determine specific feature expectations, resolution
of conflict or ambiguity in requirements as demanded by
the various users or groups of users, avoidance of feature
creep and documentation of all aspects of the project
development process from start to finish. Energy should be
directed towards ensuring that the final system or product
conforms to client needs rather than attempting to mold
user expectations to fit the requirements. Requirements
analysis is a team effort that demands a combination
of hardware, software and human factors engineering
expertise as well as skills in dealing with people.

DESIGN
Software design is the process of implementing software
solutions to one or more sets of problems. One of the main
components of software design is the software
requirements analysis (SRA). SRA is a part of the software
development process that lists specifications used in
software engineering. It is the first step to move from the
problem domain towards the solution domain. It is the
most creative phase in Software Development Life Cycle.
The goal of this phase is to transform the requirement
specification into structure. The output of this phase is
Software Design Document (SDD).

CODING
Coding this phase Software Design Document (SDD) is
converted into code by using some programming language.
Coding conventions are a set of guidelines for a specific
programming language that recommend programming
style, practices, and methods for each aspect of a program
written in that language. Coding conventions are only
applicable to the human maintainers and peer reviewers of
a software project. It is the logical phase of the Software
Development Life Cycle. The output of this phase is
program code.

TESTING
Software testing is the process of evaluation a software
item to detect differences between given input and
expected output. Also to assess the feature of A software
item. Testing assesses the quality of the product. Software
testing is a process that should be done during the
development process. In other words software testing is a
verification and validation process. Effective testing will
contribute to the delivery of high quality software
products, more satisfied users, lower maintenance costs,
and more accurate and reliable results.

THE WATERFALL MODEL
The Waterfall Model was first Process Model to be
introduced. It is also referred to as a linear-sequential life
cycle model. It is very simple to understand and use. In a
waterfall model, each phase must be completed fully
before the next phase can begin. This type of software

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 412

development model is basically used for the for the project
which is small and there are no uncertain requirements. At
the end of each phase, a review takes place to determine if
the project is on the right path and whether or not to
continue or discard the project. In this model software
testing starts only after the development is complete. In
waterfall model phases do not overlap.

ADVANTAGES OF WATERFALL MODEL:
 This model is simple and easy to understand and

use.
 It is easy to manage due to the rigidity of the model

– each phase has specific deliverables and a review
process.

 In this model phases are processed and completed
one at a time. Phases do not overlap.

 Waterfall model works well for smaller projects
where requirements are very well understood.

 DISADVANTAGES OF WATERFALL MODEL:
 Once an application is in the testing stage, it is very

difficult to go back and change something that was
not well-thought out in the concept stage.

 No working software is produced until late during
the life cycle.

 High amounts of risk and uncertainty.
 Not a good model for complex and object-oriented

projects.
 Poor model for long and ongoing projects.
 Not suitable for the projects where requirements are

at a moderate to high risk of changing.

WHEN TO USE THE WATERFALL MODEL:
 This model is used only when the requirements are

very well known, clear and fixed.
 Product definition is stable.
 Technology is understood.
 There are no ambiguous requirements Ample

resources with required expertise are available
freely The project is short.

 Very less customer interaction is involved during
the development of the product. Once the product is
ready then only it can be demoed to the end users.

Once the product is developed and if any failure
occurs then the cost of fixing such issues are very
high, because we need to update everywhere from
document till the logic.

REQUIREMENT ANALYSIS AND DEFINITION
All possible requirements of the system to be developed
are captured in this phase. Requirements are a set of
functions and constraints that the end user (who will be
using the system) expects from the system. The
requirements are gathered from the end user at the start of
the software development phase. These requirements are
analyzed for their validity, and the possibility of
incorporating the requirements in the system to be
developed is also studied. Finally, a requirement
specification document is created which serves the purpose
of guideline for the next phase of the model.

ADVANTAGES
 Simple to understand and use.
 Easy to arrange tasks.
 Process and results are well documented.
 Each phase has specific deliverable and a review.
 Works well for projects where requirements are well

understood.
 Works well when quality is more important than

cost/schedule.

DISADVANTAGES
 It is difficult to measure progress within stages.
 Cannot accommodate changing requirements.
 No working software is produced until late in the

life cycle.
 Risk and uncertainty is high with this process

model.
 Adjusting scope during the life cycle can end a

project

OPEN-SOURCE SOFTWARE
Open source software is computer software that has a
source code available to the general public for use as is or
with modifications. This software typically does not
require a license fee. There are open source software
applications for a variety of different uses such as office
automation, web design, content management, operating
systems, and communications. The key fact that makes
open source software (OSS) different from proprietary
software is its license. As copyright material, software is
almost always licensed. The license indicates how the
software may be used. OSS is unique in that it is always
released under a license that has been certified to meet the
criteria of the Open Source Definition. These criteria
include the right to:

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 413

 Redistribute the software without restriction;
 Access the source code;
 Modify the source code;
 Distribute the modified version of the software.

In contrast, creators of proprietary software usually do not
make their source code available to others to modify.
When considering the advantages of open source software
you should consider the open source product itself. Open
source products vary in quality. OSS software does not
come with phone support or personalized e-mail support.
However, there are commercial service providers who will
provide support. If you need a lot of support, consider
whether the overall costs of using an open source product
will be higher than that of a proprietary product. Open
source software is unique in that it is always released under
a license that allows users to access, modify and
redistribute the source code. Source code is a specialized
language that allows software developers to create and
modify computer programs. If you do not have legal access
to the source code, then the program cannot be changed or
moved to a different kind of computer.

The term “open source” (OS) encompasses both the
intellectual property strategy and the development
methodology for open-source software (OSS).
Community-driven OSS has also gained a market share in
computer software, such as operating systems (with the
Linux operating system), professional software (MySQL,
Apache, etc.) and desktop software like web browsers
(Firefox, Chromium), office suites (Libre Office) and
graphics software (GIMP). In these market segments and
others, OSS competes with proprietary software as a free
alternative. Although OSS can be acquired, usually with a
lower price or no price at all, the costs of using and
adopting OSS are not necessarily lower than those of
proprietary software. OSS is developed within
communities that consist of individuals (volunteers) and/or
company members (or individuals from participating
organizations). OSS development projects can be
categorized into two subcategories: community-founded
projects, launched by individuals, and sponsored projects,
launched by commercial companies, government agencies
or nonprofit-organizations.

Information and support are spread among the people in
the community and more importantly; innovations are
shared within the community [8]. The community-based
software production and innovation method has also
provided business opportunities, as companies have
successfully formed business models around OSS.

The community-driven development method has also
received some interest from organizations to be used as an
internal development method, Wessel us provides a case
where an internal open source (ISS) method is used in an
organization, with some success. The business drivers of
normal open-source software are however missing in this
kind of activity, hence adopting an OSS community inside
an organization is not a straight forward process.

APPLICATION LIFE CYCLE MANAGEMENT
PUBLIC SECTOR

SERVER-APPLICATION-SUPPORT ENGINEER
Application lifecycle management (ALM) is the
supervision of a software application from its initial
planning through retirement. It also refers to how changes
to an application are documented and tracked. ALM is a
very broad term that reflects a change in attitude towards
software development that is also expressed in the
term Dev Ops. Dev Ops blends the tasks performed by a
company's application development and systems
operations teams. In the past, a development team might
work independently using a waterfall development model
and hand off the completed software application to an
operations team for deployment and maintenance. Today,
it is more likely that developers will use an agile model
and remain involved with the application after deployment,
working with business owners and operations to make
incremental changes as needed.

There are many ALM tools available for tracking
application changes. These range from dedicated ALM
products that monitor an application from inception to
completion, automatically sorting files into logical buckets
as changes are noted, to simple wikis that require team
members to record changes manually. There might be
many issues that are likely to occur and will lead to reduce
functionality of the software being developed. If these
futuristic problems are identified and a help desk is stood
against them then the efficiency and effectiveness of the
software will increase manifolds. Thus server application
support engineers' responsibility increases in early stages
of SDLC as most of the requirements both functional and
technical are identified and most likely problems that
might associate with them are identified. Following are the
two main functions being performed by the server
application support engineers, Analyze Release Policy:
Release policies are high-level statements of how releases
are to be managed, organized, and performed in your
environment. Policies include management goals,
objectives, beliefs, and responsibilities. Use these topics to
learn more about release policies and to learn how to view,
create, and edit the policies.

Release policy purpose: Release policies are typically
written at an overall strategy level. The management
directives contained in a policy determine the way in
which activities and tasks within a given release work-flow
are performed.

View release policy: Use this procedure to view release
policies that have been written and posted to the database.
These policies provide guidelines for carrying out a release
work-flow.

Create/Edit release policy: Use this topic to specify a link
to a release policy that you have created or edited. After
you create the link, the policy name and description are

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 414

displayed in the Release Policies table. The policy
document can then be opened and reviewed by any user in
your environment who is involved with IBM Tivoli
Release Process Manager.

Analyze Release Plan
A release planning meeting is used to create a release plan
which lays out the overall project. The release plan is then
used to create iteration plan for each iteration release. It is
important for technical people to make the technical
decisions and business people to make the business
decisions. Release planning has a set of rules that allows
everyone involved with the project to make their own
decisions. The rules define a method to negotiate a
schedule everyone can commit to.

SOFTWARE PRODUCT LIFECYCLE MANAGEMENT
Continuous innovation, global collaboration, risk
management in complex projects, and rapid technological
changes are challenges that compel large and small
enterprises to react by focusing on core competence,
collaborating with partners in product design, engineering
and production, or shifting part of the activities in low
labor cost countries. Producing complex products in this
scenario requires that information about product and
process is accessible to the several actors in the value
network such as partners, suppliers, and customers. The
tendency is to use a PLM strategy to integrate people,
processes, business systems, and information in order to
manage the product development and support its lifecycle.
PLM means product lifecycle management, and its value is
increasing, especially for manufacturing, high technology,
and service industries. In fact, today PLM is widely
recognized as a business necessity for companies to
become more innovative in order to meet current
challenges such as product customization and traceability,
growing competition, shorter product development and
delivery times, globalization, tighter regulations, and
legislation. Being an innovative business, it does not
simply mean creating innovative products, but it also
means improving the processes a company uses to realize
its products and how it supports them using innovative
approaches for a complete product lifecycle. In fact, the
aim of PLM is to trace and manage all the activities and
flows of data and information during the product
development process and also during the actions of
maintenance and support in order to identify a new
business model that integrates engineering processes and
different ICT tools. Working in this direction, PLM
enables companies to satisfy the innovative needs of their
business. Different ICT systems contain knowledge about
the products (e.g., CAD, CAM, PDM, NC, and CM), and
the PLM ones allow to integrate all of them. PLM systems
are the enabling technology for PLM; they serve as a
central hub for product data supporting the collaborative
product design and development and the use and
management of information in the whole network of actors
(i.e., in an extended enterprise) involved in the realization
of the product. Therefore, PLM is a holistic business

concept; it is both a business approach and a software
solution, which during the last years has evolved from a set
of engineering oriented tools into an enterprise-level
solution. Looking at the literature and web sources, several
definitions of PLM are actually available. These
definitions have been designed in different contexts; they
come from global consulting and research firms, online
PLM communities, government agencies, technology and
software vendors, universities and academic communities,
worldwide PLM experts, and companies from various
industries that have implemented a PLM project. All these
definitions can be easily shared among industrial and
academic definitions or depending on the emphasized
perspective: some focused on technological applications,
others on processes or strategies, but many of them are
very similar.

SOFTWARE CONFIGURATION MANAGEMENT
Software configuration management (SCM) is a software
engineering discipline consisting of standard processes and
techniques often used by organizations to manage the
changes introduced to its software products. SCM helps in
identifying individual elements and configurations,
tracking changes, and version selection, control, and base
lining.

SCM is also known as software control management. SCM
aims to control changes introduced to large complex
software systems through reliable version selection and
version control.

Software configuration management (SCM or S/W CM) is
the task of tracking and controlling changes in the
software, part of the larger cross-disciplinary field
of configuration management. SCM practices
include revision control and the establishment of baselines.
If something goes wrong, SCM can determine what was
changed and who changed it. If a configuration is working
well, SCM can determine how to replicate it across many
hosts.
The acronym "SCM" is also expanded as source
configuration management process and software change
and configuration management. However, "configuration"
is generally understood to cover changes typically made by
a system administrator.

EXPLAINS SOFTWARE CONFIGURATION MANAGEMENT
(SCM)
SCM defines a mechanism to deal with different technical
difficulties of a project plan. In a software organization,
effective implementation of software configuration
management can improve productivity by increased
coordination among the programmers in a team. SCM
helps to eliminate the confusion often caused by
miscommunication among team members. The SCM
system controls the basic components such as software
objects, program code, test data,

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 415

test output, design documents, and user manuals.

THE SCM SYSTEM HAS THE FOLLOWING ADVANTAGES:

 Reduced redundant work.
 Effective management of simultaneous updates.
 Avoids configuration-related problems.
 Facilitates team coordination.
 Helps in building management; managing tools

used in builds.
 Defect tracking: It ensures that every defect has

traceability back to its source.

PURPOSES
The goals of SCM are generally:

 Configuration identification - Identifying
configurations, configuration items and baselines.

 Configuration control - Implementing a controlled
change process. This is usually achieved by
setting up a change control board whose primary
function is to approve or reject all change requests
that are sent against any baseline.

 Configuration status accounting - Recording and
reporting all the necessary information on the
status of the development process.

 Configuration auditing - Ensuring that
configurations contain all their intended parts and
are sound with respect to their specifying
documents, including requirements, architectural
specifications and user manuals.

 Build management - Managing the process and
tools used for builds.

 Process management - Ensuring adherence to the
organization's development process.

 Environment management - Managing the
software and hardware that host the system.

 Teamwork - Facilitate team interactions related to
the process.

 Defect tracking - Making sure every defect has
traceability back to the source.

With the introduction of cloud computing the purposes of
SCM tools have become merged in some cases. The SCM
tools themselves have become virtual appliances that can
be instantiated as virtual machines and saved with state and
version. The tools can model and manage cloud-based
virtual resources, including virtual appliances, storage
units, and software bundles. The roles and responsibilities
of the actors have become merged as well with developers
now being able to dynamically instantiate virtual servers
and related resources.

REFERENCES:
[1] Ian Sommerville, Software Engineering, Addison

Wesley, 9th ed., 2010.
[2] K., Sutherland, J., & Thomas, D. (2001). Manifesto

for Agile software development. Retrieved from
http://agilemanifesto.org

[3] Bhalerao, S., Puntambekar, D., & Ingle, M. (2009).
Generalizing Agile software development life cycle.
International Journal on Computer Science and
Engineering, 1(3), 222–226.

[4] Boehm, B. (1988). A Spiral model of software
development and enhancement. IEEE Computer, May
1988, pp. 61–72.

[5] Boehm, B. (2000). Spiral development: experience,
principles and refinements (Special Report CMU/SEI-
2000-SR-008). Carnegie Mellon University.

[6] Carr, M., & Verner, J. (1997). Prototyping and
software development approaches. Department of
Information Systems, Hong Kong: City University of
Hong Kong.

[7] Cockburn, A. (2008). Using both incremental and
iterative development. STSC Cross Talk, 21(5), 27–
30.

[8] Cohen, S., Dori, D., & de Uzi Haan, A. (2010). A
software system development Life Cycle model for
improved stakeholders’ communication and
collaboration. International Journal of Computers
Communications & Control, 1, 23–44.

[9] Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S.
(2005). Introducing user interface design. In D. Stone,
C. Jarrett, M. Woodroffe, & S. Minocha (Eds.), User
interface design and evaluation (pp. 3–24). San
Francisco: Elsevier.

[10] Durrani, Q. S., & Qureshi, S. A. (2012). Usability
engineering practices in SDLC. Proceedings of the
2012 International Conference on Communications
and Information Technology (ICCT) (pp. 319–324).

[11] Mathur, S., & Malik, S. (2010). Advancements in the
V-Model. International Journal of Computer
Applications IJCA, 1(12), 30–35.

[12] Munassar, N., & Govardhan, A. (2010a). Comparison
between five models of software engineering.
International Journal of Computer Science Issues,
7(5), 94–101.

[13] Rahmany, N. (2012). The differences between life
cycle models—Advantages and disadvantages.
Retrieved from
http://narbit.wordpress.com/2012/06/10/the-
differences-between-life-cyclemodels-advantages-and-
disadvantages/

[14] Richard H. Thayer, and Barry W. Boehm, “software
engineering project management”, Computer Society
Press of the IEEE, pp.130, 1986.

[15] Craig Larman and Victor Basili, “Iterative and
Incremental Development: A Brief History”, IEEE
Computer, 2003.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 3, May- June 2017 ISSN 2278-6856

Volume 6, Issue 3, May – June 2017 Page 416

[16] N. Munassar and A. Govardhan, “A Comparison
Between Five Models Of Software Engineering”,
IJCSI International Journal of Computer Science
Issues, vol. 7, no. 5, 2010.

[17] P.Humphreys,”Extending Ourselves: Computational
Science, Empiricism, and Scientific Method”, Oxford
University Press, 2004.

[18] Royce, W., “Managing the Development of Large
Software Systems”, Proceedings of IEEE WESCON
26, pp.1-9, 1970.

[19] IEEE-STD-610, “A Compilation of IEEE Standard
Computer Glossaries”, IEEE Standard Computer
Dictionary, 1991.

[20] Andrew Stellman, Jennifer Greene, “Applied Software
Project Management”, O'Reilly Media, 2005.

[21] Jim Ledin, “Simulation Planning” PE, Ledin
Engineering, 2000.

[22] Software Methodologies Advantages & disadvantages
of various SDLC models.mht No.1, January 2010,
“Evolving A New sModel (SDLC Model-2010) For
Software Development Life Cycle (SDLC)”

[23] PK.Ragunath, S.Velmourougan, P. Davachelvan,
S.Kayalvizhi, R.Ravimohan. Hoek, A. van der, Wolf,
A. L. (2003) “Software release management for
component-based software. Software—Practice &
Experience”. Vol. 33, Issue 1, pp. 77–98. John Wiley
& Sons, Inc. New York, NY, USA.

[24] Lerner, J. and Tirole, J. 2002. Some Simple
Economics of Open Source. Journal of Industrial
Economics, 50(2), 197-234.

[25] Bonaccorsi, A. Rossi Lamastra, C. and Giannangeli, S.
2004. Adaptive Entry Strategies under Dominant
Standards - Hybrid Business Models in the Open
Source Software Industry, SSRN Electronic Journal,
pp. 1-23, 2004.

[26] Hecker, F. 1999. Setting Up Shop: The Business of
Open-Source Software, IEEE Software, Volume 16
Issue 1, pp. 45-51.

[27] Moreira, M. 2004. Software configuration
management implementation roadmap, John Wiley &
Sons, 244p.

[28] Jonassen Hass, A. 2003. Configuration Management
Principles and Practice, Addison Wesley.

[29] Bersoff, E., Henderson, V. and Siegel, S. 1980.
Software Configuration Management - An Investment
in Product Integrity, Prentice Hall.

[30] IEEE Std-828. 2005. IEEE Standard For Software
Configuration Management Plans. IEEE Std 8282005
(Revision of IEEE Std 828-1998).

[31] Eskeli, J., Heinonen, S., Matinmikko, T., Parviainen,
P. and Pussinen, P. 2010. Challenges and Alternative
solutions for ERP's, VTT, Oulu. 55 p. Research report
: VTT-R-05936-10 ,
http://www.vtt.fi/inf/julkaisut/muut/2010/VTT-R-
05936-10.pdf

[32] Asklund, U. and Bendix, L. 2002. A study of
configuration management in open source software

projects. IEE Proceedings of Software Engineering
149(1): pp. 40-46.

[33] Erenkrantz, J. 2003. Release Management Within
Open Source Projects, 3rd Workshop on Open Source
Software Engineering, ICSE’03, International
Conference on Software Engineering, Portland,
Oregon, May 3-11, 2003.

[34] Michlmayr, M., Hunt F. and Probert D. 2007. Release
Management in Free Software Projects: Practices and
Problems, OSS2007: Open Source Development,
Adoption and Innovation (IFIP 2.13), Springer, pp295
– 300

[35] Doyle, C. 2007. The importance of ALM for
aerospace and defence (A&D), Embedded System
Engineering, Vol. 15, No. 5, June, pp. 28 - 29.

[36] Doyle, C. and Lloyd, R. 2007. Application lifecycle
management in embedded systems engineering,
Embedded System Engineering, Vol. 15, No. 2,
March, pp.24 – 25.

[37] Chappell, D. 2008. What is application lifecycle
management, Chappell & Associates, White paper.
Murta, L., Werner, C. and Estublier, J. 2010. The
Configuration Management Role in Collaborative
Software Engineering, In: Mistrík et al.,

[38] Collaborative Software Engineering, SpringerVerlag,
Berlin, Heidelberg, pp. 179 – 194.

[39] Rajlich, V. and Bennett, K. 2000. A staged model for
the software life cycle, Computer, July/2000.
Capiluppi, A., González-Barahona, J., Herraiz, I. and
Robles, G. 2007. Adapting the “Staged Model for
Software Evolution” to Free/Libre/Open Source

