Study of detecting Plant diseases using Non-Destructive Methods: A Review

Priyanka U. Randive1, Ratnadeep R. Deshmukh2, Pooja Vinod Janse3, Jaypalsing N. Kayte*

Department of Computer Science & Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

Abstract: Plant diseases are majorly responsible for losses in production and economy of the agricultural industries worldwide. Monitoring and identifying the diseases in plants in early stages become very important, needs an effective management for caring of plants from the diseases. Traditional way of identifying disease symptoms visually on plant is getting limited. The present review recognized the Non-destructive techniques to identifying various diseases on plants. Non-imaging, and imaging techniques provide rapid way for identify diseases in plants. Use of Vegetation indices for studying plant health which depends on various atmospheric and other intrinsic factors.

Keywords: Spectroscopic techniques, Imaging techniques, Fieldspec, Vegetation indices, Remote sensing

1. INTRODUCTION

The bacterial, fungal, viral and diseases spread by the insect’s damages the plants, causes the reduction in the plant yield. An expert person required for visually identified diseases on plants. Diseases caused by microorganism which cannot be seen through the human eyes. And also some micro level changes happened in the plant due to diseases which is not visible to human eye. That time this traditional method of analyzing plant disease visually failed many times. After observing the symptoms on plant verified disease on plant using disease detection technique.

1.1 Remote Sensing for Plant disease Assessment

For the plant disease assessment use of remote sensing started many decades ago. In the late 1920s, Aerial photography was used in detecting cotton root rot disease [1]. In the early 1980s, Toler, et al., used aerial color infrared photography was used to detect root rot of cotton and wheat stem rust disease [2]. Airborne cameras were used in most of these studies which involved the use of that record the reflected electromagnetic energy on analogue films for covering broad range of spectral bands. The reflectance data was found to be capable of detecting pathogen-induced biophysical changes in the plant leaves and canopy. Since then, however, remote sensing technology has advanced significantly. The modern sensors have superior spectral, spatial and radiometric resolutions, thereby offering enhanced capabilities to detect and map disease symptoms on plants.

1.2 Use of Vegetation Indices for study of plant health

In the field of remote sensing applications, vegetation indices (VI) quantitatively and qualitatively evaluating vegetative covers using spectral measurements. Moreover, the VI is affected by spatial-temporal variations of the atmospheric condition [3]. Remote sensing of vegetation is mainly performed by considering the electromagnetic wave reflectance information. It is well known that the reflectance of light spectra from plant changes with change in the plant type, water content within tissues of plant and other intrinsic factors [4]. The reflectance of electromagnetic spectrum from the plant is determined by chemical and morphological characteristics of the surface of organs or leaves [5]. The following light spectra’s considered for vegetation studies: (i) the ultraviolet region (UV), which ranges from 10 to 380 nm; (ii) the visible spectra, which are combined of the blue (450–495 nm), green (495–570 nm), and red (620–750 nm) wavelength regions; and (iii) the near and mid infrared band (850–1700 nm) [6,7].

Vegetation indices used in following applications [8].
- For the crop discrimination
- In Land cover applications
- Use for the identification of canopy species in tropical forest
- For detecting leaf and plant biophysical and biochemical property.
- For detecting plant stress and diseases.

VI also be useful to examine effects of Air pollution on plant leaves content such as chlorophyll content, water content, carotenoid content, anthocyanin content [9]. Biochemical content such as phosphorus, nitrogen, potassium etc. can be identified. These contents are important for metabolic processing which balance plant health [10]. This review paper describes Non-destructive methods for identifying plant diseases.

![Figure 1 Non-destructive Methods to detect Plant Diseases](image-url)
2. **DISEASE DETECTION TECHNIQUES FOR IDENTIFYING DISEASES ON PLANT**

2.1 **Molecular Techniques**

Now a days the molecular techniques uses like ELISA (enzyme-linked immunosorbent assay), which is based on proteins produced by pathogen. Another method PCR (Polymerase chain reaction) which is based on specific DNA (deoxyribose nucleic acid) sequence of the pathogen [11]. Molecular techniques has some limitations. It is time consuming required a detailed procedure specially during the sample preparation to get the accurate result. The molecular techniques require large number of samples and also time consuming process. The Non-destructive methods can be rapid method than the molecular techniques for identifying diseases on plant.

2.2 **Imaging Techniques**

By the time that it displays visible symptoms of diseases, a plant can already be adversely affected. Current imaging techniques allow pre-symptomatic (before the appearance of visual symptoms) monitoring of changes in the physiological state of plants nondestructively. Can also detecting disease related changes in the pattern of light emission from plant leaves. These techniques can be applied on scales ranging from microscopic observation to airborne remote sensing. Using these for plant monitoring would allow us to alleviate stress at an early stage, so avoiding irreversible damage and thus substantially reducing yield losses. Several imaging techniques have been used for disease detection of plant like RGB imaging, Multispectral imaging, Hyperspectral imaging etc.

2.3 **Spectroscopic Techniques**

Spectroscopy is the branch of science concerned with the investigation and measurement of spectra produced when matter interacts with or emits electromagnetic radiation. The spectroscopy technique can provide information about disease at early stages which control over the spread of plant diseases. For identifying stress levels and nutrient deficiencies in plants this technology is very helpful. In the context of plant disease detection Spectroscopic technology has been successfully applied for identifying plant stress detection by considering water stress and nutrient stress. It also be useful in significant applications such as monitoring the quality of fruits and vegetables. Spectroscopic Techniques includes Fluorescence spectroscopy, Visible infrared spectroscopy etc.

3. **LITERATURE REVIEW**

Many papers describes detection of the diseases and methods suggesting the implementation ways as illustrated there are some explained here shortly.

Belasque et al. have used fluorescence spectroscopy technique to detect stress caused by citrus canker and mechanical injury. Samples of citrus leaves collected from field and greenhouse plants. Three ratios are used ration between i) fluorescence intensity 452-735 nm ii) fluorescence intensity 685-785 nm iii) fluorescence intensity 452-685 nm. Fluorescence of citrus leaves was taken and monitored for 60 days under four different conditions: leaves with no stress, leaves with mechanical stress, leaves with disease, and leaves with disease and mechanical stress. The study done by Belasque et. al. results the potential of fluorescence spectroscopy for disease detection and discrimination between the diseased and mechanical stress [13].

Graeff et. al. In this study experiment was conducted for identify changes in leaf spectral reflectance of wheat plants during infection by powdery mildew and take-all disease for the evaluation of leaf reflectance measurements as a tool to quantify and identify disease severity and to discriminate between different wheat diseases. Wheat plants were inoculated under controlled conditions in different intensities with powdery mildew or take-all. Leaf reflectance was measured with a digital imager under controlled light conditions in various wavelength ranges which covers the visible and the near-infrared spectra (380-1300nm). Visual estimates of disease severity were made for each of the infected plants daily from the onset of visible symptoms to maximum disease severity. Reflectance within the ranges of 490-780 nm, 510-780nm and 540-1300 nm shows the strongest relationship with infection levels of both powdery mildew and take-all disease. Among all evaluated spectra's the range of 490-780nm showed most sensitive response to damage caused by powdery mildew and take-all infestation [14].

Yang et.al. they studied brown planthoppers and leaf-folder infestations in rice plants. They used spectroradiometer with reflectance range 350-2400 nm under the field condition for the collection of rice plant data. Plants were ranked on the basis of level of infection. The spectral range 426 to 1450 nm showed the maximum correlation intensity [15, 16].

Huang et.al. have used a portable spectrometer, sample measurements of diseased and healthy leaves were collected from celery leaves in the field. Raw and transformed spectral data both were used in Partial Least Squares regression models development. Disease on celery cant predicted using the raw spectra and the first and second derivative data by cross validation results. Diseased on celery leaves find in the spectral range 698-936 nm [17].

Delwiche and Kim’s study was undertaken to explore the possibility of detecting scab-damaged wheat by hyperspectral imaging system, possessing a wavelength range of 425 to 860 nm. Group of 32 normal and 32 scab infected wheat were studied. Step discrimination and discriminant analysis was carried out. Disease found at spectra 568,715 nm [18].

E. Bauriegaelet. al. studied wheat plants were analyzed using a hyper-spectral imaging system under laboratory conditions. Principal component analysis (PCA) was applied to differentiate spectra of diseased and healthy tissues in the wavelength ranges of 500–533 nm, 560–675 nm, 682–733 nm and 927–931 nm, respectively. During the development
stages Head blight could be successfully recognized. However, the best time for disease determination was just after start of flowering. Diseases identified at spectral range 500-533, 560-675 nm [19]. For detecting citrus canker and other damages on the citrus fruits hyperspectral images were obtained by Qin et.al.in the wavelength range 450–930 nm. They used a spectral information divergence (SID)-based classification method increases about 96% classification accuracy for discriminating the diseased, damaged, and healthy fruits. Diseased found at spectra553, 677, 718 and 858nm [20]. Del Fiore et.al. have used hyperspectral imaging-based method to detect toxigenic fungi on maize, and to discriminate between healthy and diseased. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector working in the visible-near infrared spectral range (400–1000 nm) was used. The results show that the hyperspectral imaging based method able to rapidly discriminate maize infected with toxigenic fungi at spectral range 500-700nm [21].

M. Prabhakar et.al. Spectroradiometer FieldSpec 3(spectral range: 350–2500 nm) were used to collect cotton plant data. In this study stress on cotton were identify by observing sensitive bands due to Leaf Hopper and derived hyperspectral indices for this pest. Regression analysis of several ratio indices formulated with two or more sensitive bands and developed new index LHI (Leaf Hopper Index). Effect on Chlorophyll and water content estimated from plant. Broad band comparison of mean reflectance spectra between healthy and leaf hopper infected plants significant decrease in blue (450 to 520 nm), red (630 to 690 nm) regions, while reflectance significantly increased in the NIR region (760 to 900 nm) [22].

M. Prabhakare. al. have used Spectroradiometer FieldSpec 3(spectral range: 350–2500 nm) to collect cotton plant data. Different levels of mealybug infestation were identified. Mealybug Stress Indices (MSI) were developed using two or three wavelengths, tested using multinomial logistic regression (MLR) and compared with other indices. Reflectance sensitivity identified at spectral range 492, 550, 674, 768 and 1454 due to mealybug damage [23].

Davood Ashourloo et. al. have used Spectroradiometer (spectral range: 350-2500 nm) to collect wheat data. Along with spectral data RGB image also used for extracting symptoms of leaf rust disease. Extracted symptoms used as input to the Spectral Mixture Analysis (SMA). Then, the spectral reflectance of the different disease symptoms estimated using SMA and least square method. Two spectral disease indices were developed Leaf Rust Disease Severity Index 1(LRDSI_1) and Leaf Rust Disease Severity Index 2(LRDSI_2) [24].

Ranjitha G used Portable spectroradiometer for collecting cotton data on field. They done analysis of damage caused by Thrips tabaci. At the end of study they found the reflectance was decrease in near infrared (770-860 nm) while blue (450-520 nm), green (520-590 nm) and red (620-680 nm) reflectance increased compared to undamaged plants. On the basis of spectral indices and pest damage a relationship between pest damage Linear regression equations were developed and VIs was established [25].

Ranjitha G used Hyperspectral radiometer to collect cotton plant data damaged by aphids and Aphis Gossypii. NDVI, RVI and GRVI these Vegetation Indices were calculated. From sensitive band analysis and linear correlation intensity analysis results that wavelength of 758 nm (NIR band) and Ratio Vegetative Index were found more sensitive to aphid damage [26].

Daniel Atherton et.al. have used handheld hyperspectral spectroradiometer to collect Potato plant data. Data were taken at two different stages of growth of plant to analyses the early blight disease. The spectra were analyzed using principal component analysis (PCA) and spectral change (ratio) analysis. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change analysis found optimal wavelengths 505, 510, 640, 665, 690, 750, and 935 nm which were most sensitive to early blight infection [27].

Mahlein A.K. et. al. they have used handheld hyperspectral spectroradiometer to collect Sugerbeet plant data. Cercospora leaf spot, powdery mildew and rust disease analyzed by studying the spectral signature. Spectral vegetation indices related to physiological parameters were calculated and correlated to the severity of diseases. The spectral vegetation indices Normalised Difference Vegetation Index (NDVI), modified Chlorophyll Absorption Integral (mCAI) and Anthocyanin Reflectance Index (ARI) differed in their ability to assess the different diseases before first symptoms became visible or even at early stage of disease development [28,29].

Sreekala G. Bajwaet. al. they have used Spectrometer to collect soybean plant data. Soybean cyst nematode (SCN) and sudden death syndrome (SDS) these two common diseases on soybean. Disease conditions were created with introducing four disease treatments as - control (no disease), SCN, SDS, and SCN+SDS. The correlation shows between disease rating and selected vegetation indices (VI) were evaluated. Bands of wavelength with the most disease discrimination capability were identified with stepwise linear discriminant analysis (LDA), logistic discriminant analysis (LgDA) and linear correlation analysis of pooled data [30].

<table>
<thead>
<tr>
<th>Plant</th>
<th>Disease</th>
<th>Statistical Method</th>
<th>Spectral Range</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>Leaf Rust</td>
<td>Regression Analysis</td>
<td>640, 650, 660, 700, 712 (average across leaf blight)</td>
<td>[22]</td>
</tr>
<tr>
<td>Cotton</td>
<td>Soybean cyst nematode</td>
<td>Linear discriminant analysis (LDA) and multinomial logistic regression (MLR)</td>
<td>640, 650, 674, 690, 935 nm</td>
<td>[26]</td>
</tr>
<tr>
<td>Wheat</td>
<td>Leaf Rust</td>
<td>SMA and Least Square Method</td>
<td>635, 695 and 750 nm</td>
<td>[24]</td>
</tr>
<tr>
<td>Cotton</td>
<td>Thrips tabaci</td>
<td>Regression Analysis</td>
<td>646, 661, 710 nm</td>
<td>[25]</td>
</tr>
<tr>
<td>Cotton</td>
<td>Aphis Gossypii</td>
<td>Regression Analysis</td>
<td>759 nm</td>
<td>[26]</td>
</tr>
<tr>
<td>Potato</td>
<td>Early Blight</td>
<td>PCA</td>
<td>355, 358, 400, 485, 490, 640, 750, and 935 nm</td>
<td>[27]</td>
</tr>
<tr>
<td>Sugar Beet</td>
<td>Cercospora leaf spot, powdery mildew and rust</td>
<td>Analysis of variance, correlation and regression Analysis</td>
<td>380-400, 490-530, 650-700 nm</td>
<td>[24,25]</td>
</tr>
<tr>
<td>Soybean</td>
<td>Soybean cyst nematode and sudden death syndrome</td>
<td>Discriminant Analysis</td>
<td>604 nm, 688 nm</td>
<td>[30]</td>
</tr>
</tbody>
</table>
4. CONCLUSION

This study summarizes some of the noninvasive techniques that have been used for plant disease detection. In remote sensing, Vegetation Indices play an important role for determining health of plant. In spectroscopic method, electromagnetic spectrum has to be considered. Reflectance curve is studied i.e. spectral signature. It is well known that the reflectance of light spectra from plant changes with change in the plant type, water content within tissues of plant and other intrinsic factors. Found that spectroscopic techniques are best nondestructive method for analyzing plant diseases and various plant characteristics than the traditional approach.

5. ACKNOWLEDGEMENT

This work is supported by Department of Science and Technology under the Funds for Infrastructure under Science and Technology (DST-FIST) with sanction no. SR/FST/ETI-340/2013 to Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. The authors would like to thank Department and University Authorities for providing the infrastructure and necessary support for carrying out the research.

References

AUTHORS

Priyanka U. Randive received the MCA degree from Govt. College of Engineering Aurangabad, Maharashtra, India, in 2013. She is currently pursuing the M.Phil degree in Computer Science from Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. She is presently working as Research Scholar in the Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. Her research interest includes Remote Sensing and Geographical Information System (GIS) Technology.

Ratnadeep R. Deshmukh, Professor and Former Head of Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) 431001 India. His research interests are Human computer Interaction, Digital Speech Signal processing, Data Mining, Image Processing, Pattern Recognition, artificial Intelligence, Computational Auditory Scene Analysis (CASA), Neural Networks, GIS and Remote Sensing, Sentiment Analysis etc. He is Fellow Member and Chairman of IETE Aurangabad Centre, PEIN Fellow, Senior Member of Association of Computer Electronics and Electrical Engineers (ACEEE). Life member of CSI (Computer Society of India), The Indian Society for Technical Education (ISTE), Indian Science Congress Association (ISCA), Institute of Doctors Engineers and Scientists (IDES). Member of International Association of Engineers (IAEng), computer science Teachers Association. (CSTA), IEEE, DST-FIST Program Coordinator, University Coordinator of Global Initiative on Academic Networks (GINAN), Coordinator of Maharashtra State Marathi World Dictionary Development Committee, Govt. of Maharashtra in the subject of Information Technology and Computer Science. Edited ten books and published more than 165 research papers.

Pooja Vinod Janse received the M.Tech degree in Computer Science and Engineering, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India, in 2014. She is currently pursuing the Ph.D. degree in Computer Science and Engineering from Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. She is currently working as BSR Research Fellow under the project entitled “UGC SAP-II DRS Phase II Biometric: Multimodal System Development” sanctioned by UGC to the Department of Computer Science and Information Technology, Dr.
Babasaheb Ambedkar Marathwada University, Aurangabad. Her research interest includes the digital speech signal processing, Remote Sensing and Geographical Information System (GIS) Technology.

Jaypalsing N. Kayte received the M.Phil degree in Computer Science from Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India, in 2014. He is currently pursuing the Ph.D. degree in Computer Science from Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. He is currently working as BSR Research Fellow under the project entitled “UGC SAP-II DRS Phase II Biometric: Multimodal System Development” sanctioned by UGC to the Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. His research interest includes the Image processing, Biomedical, Remote Sensing and Geographical Information System (GIS) Technology.