Absolute Difference of Square Sum and Sum Mean Prime Labeling of Some Snake Graphs

Sunoj B S¹ and Mathew Varkey T K²

¹Department of Mathematics, Government Polytechnic College, Attingal, Kerala, India
²Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India

Abstract: Absolute difference of square sum and sum mean prime labeling of a graph is the labeling of the vertices with \{1,2,---,p\} and the edges with absolute difference of the mean of the squares of the labels of the incident vertices and the sum of the labels of the incident vertices. The greatest common incidence number (gcin) of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the gcin of each vertex of degree greater than one is one, then the graph admits absolute difference of square sum and sum mean prime labeling. Here we investigate some snake related graphs for absolute difference of square sum and sum mean prime labeling.

Keywords: Graph labeling, square sum, prime labeling, prime graphs, snake graphs.

INTRODUCTION

All graphs in this paper are finite and undirected. The symbol V(G) and E(G) denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [1],[2],[3] and [4]. Some basic concepts are taken from Frank Harary [1]. In this paper we investigated absolute difference of square sum and sum mean prime labeling of some snake related graphs.

Definition 1.1 Let G be a graph with p vertices and q edges. The greatest common incidence number (gcin) of a vertex of degree greater than or equal to 2, is the greatest common divisor (gcd) of the labels of the incident edges.

MAIN RESULTS

Definition 2.1 Let G = (V(G),E(G)) be a graph with p vertices and q edges. Define a bijection f : V(G) → \{1,2,---, p\} by f(v) = i, for every i from 1 to p and define a 1-1 mapping

\[f_{\text{adssmp}} : E(G) \rightarrow \text{set of natural numbers N by} \]

\[f_{\text{adssmp}}(uv) = \frac{1}{2} \left| f(u)^2 + f(v)^2 - [f(u)+f(v)] \right|. \]

The induced function \(f^{*}_{\text{adssmp}} \) is said to be an absolute difference of square sum and sum mean prime labeling, if for each vertex of degree at least 2, the gcin of the labels of the incident edges is 1.

Definition 2.2 A graph which admits absolute difference of square sum and sum mean prime labeling is called an absolute difference of square sum and sum mean prime graph.

Theorem 2.1 Triangular snake \(T_n \) (n > 2) admits absolute difference of square sum and sum mean prime labeling.

Proof: Let G = \(T_n \) and let \(v_1,v_2,---,v_{2n-1} \) are the vertices of G.

Here |V(G)| = 2n-1 and |E(G)| = 3n-3. Define a function f : V \{1,2,---,2n-1\} by

\[f(v_i) = 1, \ i = 1,2,---,2n-1 \]

Clearly f is a bijection. For the vertex labeling f, the induced edge labeling \(f^{*}_{\text{adssmp}} \) is defined as follows

\[f_{\text{adssmp}}(v_i v_{i+1}) = i^2, \ \ i = 1,2,---,2n-2 \]

\[f_{\text{adssmp}}(v_{2i-1} v_{2i+1}) = 4i^2-2i+1, \ \ i = 1,2,---,n-1 \]

So, gcin of each vertex of degree greater than one is 1. Hence \(T_n \) admits absolute difference of square sum and sum mean prime labeling.

Theorem 2.2 Alternate Triangular snake \(A(T_n) \) (n > 2) admits absolute difference of square sum and sum mean prime labeling, if n is odd and triangle starts from the first vertex.
Proof: Let $G = A(T_3)$ and let $v_1, v_2, \ldots, v_{3n-1}$ are the vertices of G.

Here $|V(G)| = \frac{3n}{2}$ and $|E(G)| = n-2$.

Define a function $f : V \rightarrow \{1, 2, \ldots, \frac{n-1}{2}\}$ by

$f(v_i) = i$, $i = 1, 2, \ldots, \frac{n-1}{2}$

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{*}^{adssmp} is defined as follows

$f_{*}^{adssmp}(v_1 v_{i+1}) = i^2$, $i = 1, 2, \ldots, \frac{n-3}{2}$.

$f_{*}^{adssmp}(v_{3i-2} v_{3i}) = 9i^2 - 9i + 3$, $i = 1, 2, \ldots, \frac{n-1}{2}$.

Clearly f_{*}^{adssmp} is an injection.

$gcin$ of $(v_i) = \gcd\{f_{*}^{adssmp}(v_1 v_2), f_{*}^{adssmp}(v_1 v_3)\}$

where $f_{*}^{adssmp}(v_1 v_2) = \gcd\{1, 3\}$

and $f_{*}^{adssmp}(v_1 v_3) = \gcd\{1\}$.

$gcin$ of $(v_{i+1}) = \gcd\{f_{*}^{adssmp}(v_i v_{i+1}), f_{*}^{adssmp}(v_{i+1} v_{i+2})\}$

$gcin$ of $(v_{3i-2} v_{3i}) = \gcd\{1^2, (i+1)^2\}$

for $i = 1, 2, \ldots, \frac{n-1}{2}$.

$gcin$ of $(v_{3n}) = \gcd\{f_{*}^{adssmp}(v_{3n} v_{3n-2}), f_{*}^{adssmp}(v_{3n} v_{3n-4})\}$

$gcin$ of $(v_1) = \gcd\{f_{*}^{adssmp}(v_1 v_2), f_{*}^{adssmp}(v_1 v_3)\}$

$gcin$ of $(v_{i+1}) = \gcd\{f_{*}^{adssmp}(v_i v_{i+1}), f_{*}^{adssmp}(v_{i+1} v_{i+2})\}$

$gcin$ of $(v_{3i-2} v_{3i}) = \gcd\{1^2, (i+1)^2\}$

$gcin$ of $(v_{3n}) = \gcd\{f_{*}^{adssmp}(v_{3n} v_{3n-2}), f_{*}^{adssmp}(v_{3n} v_{3n-4})\}$

Clearly f_{*}^{adssmp} is an injection.

So $gcin$ of each vertex of degree greater than one is 1.

Hence $A(T_3)$ admits absolute difference of square sum and sum mean prime labeling.

Theorem 2.4 Alternate Triangular snake $A(T_3)$ $(n > 3)$

admits absolute difference of square sum and sum mean prime labeling, if n is even and triangle starts from the second vertex.

Proof: Let $G = A(T_3)$ and let $v_1, v_2, \ldots, v_{3n-2}$ are the vertices of G.

Here $|V(G)| = \frac{3n}{2}$ and $|E(G)| = 2n-3$.

Define a function $f : V \rightarrow \{1, 2, \ldots, \frac{n-2}{2}\}$ by

$f(v_i) = i$, $i = 1, 2, \ldots, \frac{n-2}{2}$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{*}^{adssmp} is defined as follows

$f_{*}^{adssmp}(v_1 v_{i+1}) = i^2$, $i = 1, 2, \ldots, \frac{n-4}{2}$.

$f_{*}^{adssmp}(v_{3i-1} v_{3i+1}) = 9i^2 - 3i + 1$, $i = 1, 2, \ldots, \frac{n-2}{2}$.

Clearly f_{*}^{adssmp} is an injection.

$gcin$ of $(v_{i+1}) = \gcd\{f_{*}^{adssmp}(v_i v_{i+1}), f_{*}^{adssmp}(v_{i+1} v_{i+2})\}$

$gcin$ of $(v_{3i-1} v_{3i+1}) = \gcd\{1^2, (i+1)^2\}$

$gcin$ of $(v_{3n}) = \gcd\{f_{*}^{adssmp}(v_{3n} v_{3n-2}), f_{*}^{adssmp}(v_{3n} v_{3n-4})\}$

Clearly f_{*}^{adssmp} is an injection.

So $gcin$ of each vertex of degree greater than one is 1.

Hence $A(T_3)$ admits absolute difference of square sum and sum mean prime labeling.

Theorem 2.5 Alternate quadrilateral snake $A(Q_n)$ $(n > 3)$

admits absolute difference of square sum and sum mean prime labeling, if n is odd and quadrilateral starts from the first vertex.

Proof: Let $G = A(Q_n)$ and let v_1, v_2, \ldots, v_{2n} are the vertices of G.

Here $|V(G)| = 2n-1$ and $|E(G)| = \frac{5n-5}{2}$.

Define a function $f : V \rightarrow \{1, 2, \ldots, 2n-1\}$ by

$f(v_i) = i$, $i = 1, 2, \ldots, 2n-1$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{*}^{adssmp} is defined as follows

$f_{*}^{adssmp}(v_1 v_{i+1}) = i^2$, $i = 1, 2, \ldots, 2n-2$.

$f_{*}^{adssmp}(v_{4i-3} v_{4i+1}) = 16i^2 - 16i + 6$, $i = 1, 2, \ldots, \frac{2n-1}{2}$.

Clearly f_{*}^{adssmp} is an injection.

$gcin$ of $(v_1) = \gcd\{f_{*}^{adssmp}(v_1 v_2), f_{*}^{adssmp}(v_1 v_3)\}$

$gcin$ of $(v_{i+1}) = \gcd\{f_{*}^{adssmp}(v_i v_{i+1}), f_{*}^{adssmp}(v_{i+1} v_{i+2})\}$

$gcin$ of $(v_{4i-3} v_{4i+1}) = \gcd\{1^2, (i+1)^2\}$

$gcin$ of $(v_{3n}) = \gcd\{f_{*}^{adssmp}(v_{3n} v_{3n-2}), f_{*}^{adssmp}(v_{3n} v_{3n-4})\}$

Clearly f_{*}^{adssmp} is an injection.

So $gcin$ of each vertex of degree greater than one is 1.

Hence $A(Q_n)$ admits absolute difference of square sum and sum mean prime labeling.
Theorem 2.6 Alternate quadrilateral snake $A(Q_n)$ (n > 3) admits absolute difference of square sum and sum mean prime labeling, if n is even and (n-2) \equiv 0(mod6) and quadrilateral starts from the first vertex.

Proof: Let $G = A(Q_n)$ and let v_1, v_2, \ldots, v_{2n} are the vertices of G.

Here $|V(G)| = 2n$ and $|E(G)| = \frac{5n-2}{2}$.

Define a function $f : V \rightarrow \{1, 2, \ldots, 2n\}$ by $f(v_i) = i, i = 1, 2, \ldots, 2n$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f^*_{adssmp} is defined as follows

$g_{adssmp}(v_1, v_{i+1}) = i^2, i = 1, 2, \ldots, 2n-1$

$g_{adssmp}(v_{2i-3}, v_{2i}) = 16i^2 - 16i + 6, i = 1, 2, \ldots, \frac{n}{2}$.

Clearly f^*_{adssmp} is an injection.

So, g_{adssmp} of each vertex of degree greater than one is 1.

Hence $A(Q_n)$, admits absolute difference of square sum and sum mean prime labeling.

Theorem 2.7 Alternate quadrilateral snake $A(Q_n)$ (n > 3) admits absolute difference of square sum and sum mean prime labeling, if n is even and quadrilateral starts from the second vertex.

Proof: Let $G = A(Q_n)$ and let v_1, v_2, \ldots, v_{2n} are the vertices of G.

Here $|V(G)| = 2n-2$ and $|E(G)| = \frac{5n-8}{2}$.

Define a function $f : V \rightarrow \{1, 2, \ldots, 2n-2\}$ by $f(v_i) = i, i = 1, 2, \ldots, 2n-2$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f^*_{adssmp} is defined as follows

$g_{adssmp}(v_1, v_{i+1}) = i^2, i = 1, 2, \ldots, 2n-3$.

$g_{adssmp}(v_{2i-3}, v_{2i}) = 16i^2 - 8i + 3, i = 1, 2, \ldots, \frac{n-2}{2}$.

Clearly f^*_{adssmp} is an injection.

So, g_{adssmp} of each vertex of degree greater than one is 1.

Hence $A(Q_n)$, admits absolute difference of square sum and sum mean prime labeling.

Theorem 2.8 Quadrilateral snake with one chord in each quadrilateral $A(Q_n)$ (n > 2) admits absolute difference of square sum and sum mean prime labeling.

Proof: Let G be the graph and let $v_1, v_2, \ldots, v_{3n-2}$ are the vertices of G.

Here $|V(G)| = 3n-2$ and $|E(G)| = 5n-5$.

Define a function $f : V \rightarrow \{1, 2, \ldots, 3n-2\}$ by $f(v_i) = i, i = 1, 2, \ldots, 3n-2$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f^*_{adssmp} is defined as follows

$g_{adssmp}(v_1, v_{i+1}) = i^2, i = 1, 2, \ldots, 3n-3$.

$g_{adssmp}(v_{3i-2}, v_{3i+1}) = 9i^2 - 6i + 3, i = 1, 2, \ldots, n-1$.

$g_{adssmp}(v_{3i-1}, v_{3i+1}) = 9i^2 - 3i + 1, i = 1, 2, \ldots, n-1$.

Clearly f^*_{adssmp} is an injection.

So, g_{adssmp} of each vertex of degree greater than one is 1.

Hence G, admits absolute difference of square sum and sum mean prime labeling.

References