
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 7, Issue 6, November - December 2018 ISSN 2278-6856

Volume 7, Issue 6, November - December 2018 Page 1

Abstract : Query optimizer is an important component in the
architecture of relational data base management system. This
component is responsible for translating user submitted query
into an efficient query evolution program which can be executed
against the database. The present query evolution existing
algorithm tries to find the best possible plan to execute a query
with a minimum amount of time using mostly semi accurate
statistical information (e.g. sizes of temporary relations,
selectivity factors, and availability of resources). It is a static
approach for generating optimal or close to optimal execution
plan. Which in turn increases the execution cost of the query to
reduce the execution cost of the query; I propose a new dynamic
query optimization algorithm which is based on greedy dynamic
programming algorithm uses randomized strategies and reduces
the execution cost of the queries and system resources and also
it works efficiently with distributed and centralized databases.
Keywords- Query optimizer, relational database, static
query optimization, dynamic query optimization.

1 INTRODUCTION
The query optimizer is the component of a database
management system that attempts to determine the most
efficient way to execute a query. The optimizer considers
the possible query plans for a given input query, and
attempts to determine which of those plans will be the most
efficient. Cost-based query optimizers assign an estimated
"cost" to each possible query plan, and choose the plan with
the smallest cost. Costs are used to estimate the runtime
cost of evaluating the query, in terms of the number of I/O
operations required, the CPU requirements, and other
factors determined from the data dictionary. The set of
query plans examined is formed by examining the possible
access paths (e.g. index scan, sequential scan) and join
algorithms (e.g. sort-merge join, hash join, nested loop
join). The search space can become quite large depending
on the complexity of the SQL query.

Generally, the query optimizer cannot be accessed directly
by users, once queries are submitted to database server, and
parsed by the parser, they are then passed to the query
optimizer where optimization occurs. However, some
database engines allow guiding the query optimizer with
hints. Not every aspect of SQL execution can be optimally
planned ahead of time. Oracle thus makes dynamic
adjustments to its query-processing strategies based on the
current database workload. The goal of dynamic
optimizations is to achieve optimal performance even when
each query may not be able to obtain the ideal amount of
CPU or memory resources. Three steps are involved for

query processing: decomposition, optimization and
execution.

The first step decomposes a relational query using logical
schema into an algebraic query. During this step syntactic,
semantic and authorization are done.

The second step is responsible for generating an efficient
execution plan for the given SQL query from the
considered search space.

The third step consists in implementing the efficient
execution plan.

 Most of the DBMSs have used the static optimization
approach which consists of generating an optimal (or close
to the optimal) execution plan, then executing it until the
termination. All the methods, using this approach, suppose
that the values of the parameters used (e.g. sizes of
temporary relations, selectivity factors, availability of
resources) to generate the execution plan are always valid
during its execution. However, this hypothesis is often
unwarranted. Indeed, the values of these parameters can
become invalid during the execution due to several causes.
Estimation errors: the estimation on the sizes of the
temporary relations and the relational operator costs of an
execution plan can be erroneous because of the absence, the
obsolescence, and the inaccuracy of the statistics describing
the data, or the errors on the hypotheses made by the cost
model. For instance, the dependence or the independence
between the attributes member of a selective clause(e.g.
town=’Paris’ and country = ‘France’).

These estimation errors are propagated in the rest of the
execution plan. Moreover, showed that the propagation of
these errors is exponential with the number of joins.
Unavailability of resources: at compile-time, the optimizer
does not have any information about the system state when
the query will run, in particular, about the availability of
resources to allocate (e.g. available memory, CPU
load).Because of reasons quoted previously, the execution
plans generated by a static optimizer can be sub-optimal.
To correct this sub-optimality, some recent research
suggest improving the accuracy of parameter values used
during the choice of the execution plan. A first solution
consists in improving the quality of the statistics on the data
by using the previous executions. This solution was used by
to improve the estimation accuracy of the operator

Dynamic Query Optimization in Relational
Database

Mr. Omkar Singh1, Dr. S. K. Singh2, Mr. Ajeet Pal3, Ms. Vibha Mishra4

 1,2,3,4 Thakur College of Science and Commerce, Thakur Village, Kandivali – E, Mumbai – 400101

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 7, Issue 6, November - December 2018 ISSN 2278-6856

Volume 7, Issue 6, November - December 2018 Page 2

selectivity factors and by to estimate the correlation
between predicates

2 Related Work
The optimization algorithm is based on relational algebra
equivalence transformation. The basic idea of proposed
algorithm is: To convert the query problem into relational
algebra expression, analyse the obtained query syntax tree,
and optimize according to equivalence rules. The algorithm
first uses relational algebra equivalence transformation to
raise the connecting and merging operations in the query
tree as much as possible, while moving the selection and
projection operations down to the fragment definition. Then
to determine the horizontal or vertical slice, if the
horizontal slice, to compare with the slice and the selection
conditions to remove the contradictory fragments, if only a
fragment left then to remove one parallel operation.

If the vertical slice, then to compare with the fragment
property set and the attribute set involved in projection
operation to remove all the unrelated fragments. If only one
vertical segment left then to remove one connection
operation, thus to achieve the purpose of optimization
query. It is to use heuristic optimization method to optimize
the relational algebra expression. And in the relational
algebra expression, the most time and space operation is
Cartesian product and join operations, so, the
implementation of selection and projection operations as
early as possible, to avoid the direct Cartesian product
operation, then combines a series of selection and
projection before and after it together to reduce the size of
intermediate relations, thus to achieve optimization. The
Proposed algorithm utilizes some of the rules of transform
an initial query tree into an optimized tree that is efficient
to execute during heuristic optimization.

INPUT: SQL Statement.
OUTPUT: Best evaluation plan

Algorithm:
Step 1: Design the initial canonical tree of the query.
Step 2: Move the SELECT Operation down the query tree.
Step 3: Apply more restrictive SELECT operation first. If
the two relations are residing at same site, they will be
handled first.
Step 4: Replace CARTESIAN PRODUCT and SELECT
with JOIN operation.
Step 5: Move PROJECT operations down the query tree.

3 Methodology
The main motivations to introduce ‘dynamicity’ into query
optimization, in particular to reduce the query execution
time or to speed up the query response time of the Database
management system. We propose a new algorithm which
will work efficiently with simple, nested, co-related
queries. The algorithm will exhibit the dynamism in
calculating query execution plan for the last inner nested
query. Same technique is again applied for outer layer
nested query.

Simultaneously algorithm is generating the optimal query
execution plan and executing the plan for each nested
query. It works in bottom-up way by building more
complex sub-plans from simpler sub-plans until the
complete plan is constructed.

SELECT {DISTINCT} <list of
column> FROM <list of Table>
{WHERE <list of “Boolean Factor”
(Predicates)} {GROUP BY <list of column>}
{HAVING <list of Boolean Factor>}
{ORDER BY <list of column>};

3.1 The algorithm generates optimal query execution plan
based on the following semantics:
3.1.1 Take Cartesian product (cross-product) of tables in

FROM clause, projecting to-
3.1.2 Only those columns that appear in other clauses.
3.1.3 If there’s a WHERE clause, apply all filters in it.
3.1.4 If there’s a GROUP BY clause, form groups on

the result.

3.1.5 If there’s a HAVING clause, filter groups with it.
3.1.6 If there’s an ORDER BY clause, make sure output

is in the right order.
3.1.7 If there’s a DISTINCT modifier,
3.1.8 Remove duplicates

3.2 Heuristic Based Algorithm for Query
Optimization.
There are following steps in converting a query tree during
heuristic optimization by using various rules. First we have
query in SQL and convert it into relational algebra query.

Example:

select first_name,salary,dept_no
from employees
full outer join dept_emp on employees.emp_no =
dept_emp.emp_no
full outer join salaries on employees.emp_no =
salaries.emp_no;
3.2.1 Initial query tree for the SQL query made by

parser.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 7, Issue 6, November - December 2018 ISSN 2278-6856

Volume 7, Issue 6, November - December 2018 Page 3

3.2.2 Moving SELECT operations down the query tree

3.2.3 Applying the more restrictive SELECT operation first.

3.2.4 Replacing CARTESIAN PRODUCT and

SELECT with JOIN operations.

3.2.5 Moving PROJECT operations down the query tree

Conclusion
Most of the query optimizers of database management
systems are using static approaches to generate optimal
execution plan for executing queries against the databases.
it increases the execution cost of the queries and also
consumes more system resources like CPU& Memory. The
proposed algorithm which is based on greedy dynamic
programming algorithm uses randomized strategies and
reduces the execution cost of the queries and system
resources.
Future Enhancement
Optimization only on select-project-join queries also need
to handle complex queries (e.g. Top-k query, Group by,

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 7, Issue 6, November - December 2018 ISSN 2278-6856

Volume 7, Issue 6, November - December 2018 Page 4

aggregations, materialized view, recursive query, dynamic
query).Optimize query on centralized system can be
extended to implement on parallel database and Distributed
Database.
REFERENCES
[1] SQL SERVER 20012 Query Optimization Of Join
Function.
[2] Vishal P. Patel, Hardik R. Kadiya “Optimization of
Large Join Query using Heuristic Greedy Algorithm”
IJCAT - International Journal of Computing and
Technology Volume 1, Issue 1, February 2014.
[3] N. Satyanarayan, SK Sharfuddin, SK Jan Bhasha
“New Dynamic Query Optimization Technique in
Relational Database Management Systems” International
Journal of Communication Network Security, ISSN: 2231 –
1882, Volume-2, Issue-2, 2013.

