
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 17

Abstract: In this paper we present methods that can improve
numerical parallel implementation using a scalability-related
measure called input file affinity measure on 2-D Telegraph
Equation running on a master-worker paradigm. The
implementation was carried out using Message Passing
Interface (MPI). The Telegraph Equation was discretized using
Alternating Direction Implicit (ADI), Iterative Alternating
Direction Explicit Method by D’Yakonov (IADE-DY) and
Mitchell-Fairweather Double Sweep Method (MF-DS). Parallel
performance compare of these methods using the Input File
Affinity Measure (Iaff) were experimentally evaluated and
numerical results show their effectiveness and parallel
performance. We show in this paper that, the input file affinity
measure has scalability performance with less information to
schedule tasks.
Keywords: Parallel Performance, Input File Affinity,
Master-Worker, 2-D Telegraph Equation, MPI.

1. INTRODUCTION
Computing infrastructures are reaching an unprecedented
degree of complexity. First, parallel processing is coming
to mainstream, because of the frequency and power
consumption wall that leads to the design of multi-core
processors. Second, there is a wide adoption of distributed
processing technologies because of the deployment of the
Internet and consequently large-scale grid and cloud
infrastructures. In master-worker paradigm a master node is
responsible for scheduling computation among the worker
and collecting the results [5]. The master-worker paradigm
has fundamental limitations: both communications from the
master and contention in accessing file repositories may
become bottlenecks to the overall scheduling scheme,
causing scalability problems. Parallelization of Partial
Differential Equations (PDEs) by time decomposition was
first proposed by [22] following earlier efforts at space-
time methods [15, 16, 30]. The application of the
alternating iterative methods to solve problem of 2-D
telegraph equations have shown that they need high
computational power and communications. In the world of
parallel computing MPI is the de facto standard for
implementing programs on multiprocessors. To help with
program development under a distributed computing
environment a number of software tools have been

developed MPI [13] is chosen here since it has a large user
group.
An alternative and cost effective means of achieving a
comparable performance is by way of distributed
computing, using a system of processors loosely connected
through a Local Area Network (LAN). Relevant data need
to be passed from processor to processor through a message
passing mechanism [12, 18, 27]. The telegraph equation is
important for modeling several relevant problems such as
wave propagation [24], and others. In this paper, a number
of iterative methods are developed to solve the telegraph
equations [8]. Some of these iterative schemes are
employed in various parallel platforms [15, 16, 30]. Parallel
algorithms have been implemented for the finite difference
method [9, 10, 8], the discrete eigen functions method used
in [1] and [27] used the AGE method on 1-D telegraph
problem, but not implemented on parallel platform for
parallel improvement. We present in this paper algorithms
which have scalability performance comparable to other
algorithms in several circumstances. We describe the
design of our parallel system through Iaff for understanding
parallel execution. Through several implementations and
performance improvement analysis of the alternating
iterative methods, we explore how to use the Iaff on master-
slave paradigm for identifying parallel performance on 2-D
telegraph equation. We assume the amount of work is
increased exclusively by increasing the number of tasks.
The reason for this is that it is relatively easy to increase the
range of parameters to be analyzed in an application. On
the order hand, in order to increase the amount of work
related to each individual task, the input data for that task
should be changed, which may change the nature of the
problem to be processed by those tasks and it is not always
feasible.
It is worth noting that some of the related works mentioned
focus on the problem of efficient scheduling of the
decomposition to execute on distributed architectures
organized either as pure master-slave or hierarchical
platforms, while lacking scalability analysis. We consider
that the amount of computation associated with each task is
fixed, each task depends on one or more input files for
execution, and input file can be shared among tasks [14]. In

Distributed Performance Improvement of
Alternating Iterative Methods Running on

Master-Worker Paradigm with MPI

Ewedafe Simon Uzezi1, Rio Hirowati Shariffudin2

1Department of Computing, Faculty of Science and Technology,
The University of the West Indies, Mona Kingston 7, Jamaica

2Institute of Mathematical Sciences, Faculty of Science,
University of Malaya, 50603 Kuala Lumpur, Malaysia.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 18

this work we assume that both the size of the input files, the
dependencies among input files and tasks are known. We
also consider that the master node has access to a storage
system which serves as the repository of all input and
output files. This paper is organized as follows: Section 2
discusses previous research work. Section 2 presents the
model for the 2-D telegraph equation and introduces the
IADE-DY and DS-MF scheme. Section 3 describes the
input file affinity measure. Section 4 describes the parallel
implementation of the algorithms. Section 5 presents the
numerical and experimental result of the schemes under
consideration. Finally, section 6 presents our conclusions.

1.1 Previous research work
Parallel performance of algorithms has been studied in
several papers during the last years [7]. Bag of Task (BoT)
applications composed of independent tasks with file
sharing have appeared in papers [8, 14, 19]. Their relevance
has motivated the development of specialized environments
which aim to facilitate the execution of large BoT
applications on computational grids and clusters, such as
the AppLes Parameter-Sweep Template (APST) [4].
Giersch et al., [14] proved theoretical limits for the
computational complexity associated to the scheduling
problem. In [19], they proposed an iterative scheduling
approach that produces effective and efficient schedules,
compared to the previous works in [5, 14]. However, for
homogeneous platforms, the algorithms proposed in [19]
can be considerably simplified, in a way that it becomes
equivalent to algorithms proposed previously. Fabricio [11]
analyzes the scalability of BoT applications running on
master-slave platforms and proposed a scalability related
measure. Eric [2] presents a detailed study on the
scheduling of tasks in the parareal algorithm. It proposes
two algorithms, one which uses a manager-worker
paradigm with overlap of sequential and parallel phases,
and a second that is completely distributed. Hinde et al.
[17], proposed a generic approach to embed the master-
worker paradigm into software component models and
describes how this generic approach can be implemented
within an existing software component model. On the
numerical computing part, [29] went in search of numerical
consistency in parallel programming and presented
methods that can drastically improve numerical consistency
for parallel calculations across varying numbers of
processors. In [9, 10], parallel implementation of 2-D
telegraph equation using the SPMD technique and domain
decomposition strategy have been researched and they
presented a model that enhances overlap communication
with computation to avoid unnecessary synchronization,
thus yield significant speed up. On the parallel computing
front, [28], has proposed a parallel ADI solver for linear
array of processors. The ADI method in [23, 26] have been
used for solving heat equations in 2D. Approach to solve
the telegraphic equations using different numerical schemes
has been treated in [8].

2. TELEGRAPH EQUATION
We consider the second order telegraph equation as given
in [8]:

2 2 2

2 2 2 0 1,0 1, 0v v v va b x y t
t t x y

    
            

 (2.1)

extending the finite difference scheme on the telegraph
equation of (3.1) becomes:

1 1 1 1
, , , , ,

2

1 1 1 1 1 1
1, , 1, , 1 , , 1

2 2

2
() 2

2 2
0

() ()

n n n n n
i j i j i j i j i j

n n n n n n
i j i j i j i j i j i j

v v v v v
a

t t

v v v v v v
b

x y

   

     
   

  
 

 

          

 (2.2)

Although this simple implicit scheme is unconditionally
stable, we need to solve a penta-diagonal system of
algebraic equations at each time step. Therefore, the
computational time is huge.

2.1 The 2-D ADI Method

In this section, we derive the 2-D ADI scheme of the
simple implicit FDTD method by using a general ADI
procedure extended to (2.1). Equation (2.4) can be rewritten
as:

0vCv2CvAI 1n
ji,1

n
ji,o

1n
ji,

2

1m
m 







 


 (2.3)

sub-iteration 1 is given by:

n 1(1) n 1(1) n 1(1)
x i 1,j x i,j x i 1,j

n 1(*) n n 1
2 i,j o i,j 1 i,j

ρ v (1 2ρ)v ρ v

(A)v (2C v C v) i,j

  
 

 

    

   
 (2.4)

For various values of i and j , (2.4) can be written in a more
compact matrix form at the (k + ½) time level as:

n.1,2,j,fAv k
1/2)(k

j  (2.5)
sub-iteration 2 is given by:

n 1(2) n 1(2) n 1(2)
y i,j 1 y i,j y i,j 1

n 1(1) n 1(*)
i,j 2 i,j

ρ v (1 2ρ)v ρ v

v A v . i,j

  
 

 

    

 
 (2.6)

For various values of i and j , (2.6) can be written in a more
compact matrix form as:

m1,2,i,gBv 1/2k

1)(k
i  
 (2.7)

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 19

this is a prediction of 1
,
n
i jv  by the extrapolation method.

Splitting by using an ADI procedure, we get a set of
recursion relations as follows:

1(1) 1(*) 1

1 , 2 , , 1 ,() () (2)n n n n
i j i j o i j i jI A v A v C v C v       (2.8)

 1(2) 1(1) 1(*)
2 , , 2 ,() n n n

i j i j i jI A v v A v     (2.9)

where 1(1)
,
n
i jv  is the intermediate solution and the desired

solution is 1 1(2)
, ,
n n
i j i jv v  . Finally, expanding A1 and A2 on

the left side of (2.8) and (2.9), we get the 2D ADI
algorithm.

2.2 IADE-DY

The matrices derived from the discretization resulting to A
(2.5) and B (2.7) is respectively tridiagonal of size (mxm)
and (nxn). Hence, at each of the (k + ½) and (k + 1) time
levels, these matrices can be decomposed into

1 2 1 2
1 ,
6

G G G G  where 1 2G and G are lower and

upper bidiagonal matrices. By carrying out the relevant
multiplications, the following equations for computation at
each of the intermediate levels are obtained:

(i) at the (1/ 2)thp  iterate,

^
(1/2) () ()
1 1 1 1 2 1

^ ^
(1/2) (1/2) () () ()

1 1 1 1 1 1 1 1^

^
(1/2) (1/2) () (

1 1 1 1 1 1 1^

1()

1(()),

2,3, , 1
1(()

p p p

p p p p p
i i i i i i i i i i i i i

p p p p
m m m m m m m m m m

u s su wsu hf
d

u l u v s u v w s s u wsu hf
d

i m

u l u v s u v w s s u
d






 
       

 
      

  

      

 

    



))mhf

 (2.10)
 (ii) at the (1)thp  iterate,

(1/2)
(1)

^
(1) (1/2) (1)

1

,

1 (),

, 1, 2, , 2,1

p
p m

m
m

p p p
i i i i

i

i i

uu
d

u u u u
d

where d r e i m m




  




 

     

 (2.11)

The two-stage iterative procedure in the IADE-DY
algorithm corresponds to sweeping through the mesh

involving at each iterates the solution of an explicit
equation.

2.3 DS-MF

The numerical representative of Eq. (2.8) and (2.9) using
the Mitchell and Fairweather scheme is as follows:

 

n 1(1)
x 1 i,j

n 1(*) n n 1
y 2 i,j o i,j 1 i,j

1 11 ρ A v
2 6

1 11 ρ A v 2C v C v
2 6



 

      
  

       
  

 (2.2)

n 1(2)
y 2 i,j

n 1(1) n 1(*)
x 1 i,j 2 i,j

1 11 ρ A v
2 6

1 11 ρ A v A v
2 6



 

      
  

      
  

(2.13)

The horizontal sweep (2.12) and the vertical sweep (2.13)
formulas can be manipulated and written in a compact
matrix.

3 THE IAFF
With reference to [11], we introduce the Iaff. First, we
describe a simplified execution model that classifies several
issues related with the execution of the telegraphic equation
on the master-worker paradigm. Typically, each task goes
through three phrases during execution of a parameter-
sweep application: (1) an initialization phase, where the
necessary files are sent from the master to the slave node
and the task is started. The duration of this phase is equal to
tinit. Note that this phase includes the overhead incurred by
the master to initiate a data transfer to a slave, (2) a
computational phase, where the task processes the
parameter file at the slave node and produces an output file.
The duration of this phase is equal to tcomp. Any additional
overhead related to the reception of input files by a worker
node is also included in this phase and (3) a completion
phase, where the output file is sent back to the master and
the master task is completed. The duration of this phase is
equal to tend. This phase may require some processing at the
master, mainly related to writing out files to the repository.
Since this writing may be deferred until the disk is
available, we assume that this processing time is negligible.
Therefore, the initialization phase of one slave can occur
concurrently with the completion phase of another slave
node. Given these three phases, the total execution time of
a task is equal to

 endcompinittotal tttt  (3.1)

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 20

as the machine model, we consider a cluster composed of P
+ 1 processors. For the rest of this paper we assume that T
» P. One processor is the master and the other processors
are workers. Communication among master and workers is
carried out through Ethernet and master can only send files
through the network to a single worker at a given time. We
assume the communication link is full-duplex, i.e., the
master can receive an output file from a worker at the same
time it sends an input file to another worker. We also
assume that communication computation begins as soon as
the input files are completely received. This assumption is
coherent to the master-worker paradigm that is currently
available in [14].

For the sake of simplicity and without loss of generality, we
consider in this section that there is no contention related to
the transmission of output files from worker nodes to the
master. Indeed, it is possible to merge the computation
phase with the completion phase without affecting the
results of this section. Therefore, we merge both phases as

'
compt in the equations that follow. A worker is idle when it

is not involved with the execution of any of the three
phases of a task. For the results below, the task model is
composed of T heterogeneous tasks. All tasks and files
have the same size and each task depends upon a single
non-shared file. Note that the problem of scheduling an
application where each task depends upon a single non-
shared file, all tasks and files have the same size and the
master-worker paradigm is heterogeneous, has polynomial
complexity [14]. These assumptions are considered in the
analysis that follows. We define the effective number of
processors effP as the maximum number of workers needed
to run an application with no idle periods on any worker
processor. Taking into account the task and platform
models described in this section, a processor may have idle
periods if:

 init
'
comp 1)t(Pt  (3.2)

effP is then given by the following equation:












 1

t
t

P
init

'
comp

eff (3.3)

the total number of tasks to be executed on a processor is at
most

 




P
TM (3.4)

for a platform with effP processors, the upper bound for the
total execution time (makespan) will be
   init

'
compinitmakespan 1)t(P)tM(tt  (3.5)

the second term in the right hand side of Eq. (3.5) shows
the time needed to start the first (P – 1) tasks in the other P
– 1 processors. If we have a platform where the number of
processors is larger than effP the overall makespan is
dominated by communication times between the master and
the workers. We then have:

   '
compinitmakespan tMPtt  (3.6)

the set of Eqs. (3.2) – (3.6) will be considered in
subsequent sections of this paper. It is worth noting that Eq.
(3.5) is valid when workers are constantly busy, either
performing computation or

communication. Eq. (3.6) is applicable when workers have
idle periods, i.e., are not performing either computation or
communication. Eq. (3.2) occurs mainly in two cases:

(1) For very large platforms (P large).

(2) For applications with small
init

comp

t
t

ratio, such as

fine-grain applications.
In order to measure the degree of affinity of a set of tasks
concerning their input files, we introduce the concept of
input file affinity. Given a set of G of tasks, composed of K
tasks,  k21 T,,T,TG  , and the set F of the Y input
files needed by the tasks belonging to group G,

 y21 f,,f,fF  , we define affI as follows:









 y

1i ii

y

1i i
aff

fN

f1)(N
(G)I (3.7)

where if is the size in bytes of file if and

K)N(1N ii  is the number of tasks in group G which

have file if as an input file. The term 1)(N i  in the
numerator of the above equation can be explained as
follows: if iN tasks share an input file if , that file may be

sent only once (instead of iN times) when the group of
tasks is executed on a worker node. The potential reduction
of the number of bytes transferred from a master node to a
worker node considering only input file if is then

ii f1)(N  . Therefore, the input file affinity indicates the
overall reduction of the amount of data that needs to be
transferred to a worker node, when all tasks of a group are
sent to one node. Note that 1I0 aff  . For the special

case where all tasks share the same input file
k

1kIaff


 ,

where k is the number of tasks of a group.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 21

4 PARALLEL IMPLEMENTATION

The implementation is done on Geranium Cadcam Cluster
consisting of 48 Intel Pentium at 1.73GHZ and 0.99GB
RAM. Communication is through a fast Ethernet of 100
MBits per seconds connected and running Linux. The
cluster performance has high memory bandwidth with a
message passing supported by MPI [13]. The program
written in C provided access to MPI through calling MPI
library routines. At each time-step we have to evaluate

1nv  values at lm'' grid points, where l'' is the number of
grid points along x-axis. Suppose we are implementing this
method on SR  mesh connected computer. Denote the
workers by

MSandS,2,1,j1l,RandR,2,1,i1:P j1i1,  

. The workers ,Pi1j1 are connected as shown in Fig.4. Let






R
1L1 and 





S
MM1 where  is the smallest

integer part. Divide the lm'' grid points into RS'' groups
so that each group contains at most 1)1)(M(L 11  grid

points and at least 11ML grid points. Denote these groups
by

S,1,2,j1R,,1,2,i1:G i1j1   . Design ,G i1j1

such that it contains the following grid points












 

1MorM,2,1,j
1LorL,2,1,i:)Y,(X

G
11

i1j1)(j111)(i1
i1j1





Assign the group ,G i1j1 to the workers

S.,2,1,jFor,R,,2,1,i:P 11j1i1,   Each

worker computes its assigned group 1n
ji,v  values in the

required number of sweeps. At the th1/2)(p  sweep the

workers compute 1/2)th(p
ji,v  values of its assigned groups.

For the th1/2)(p  level the worker i1j1P requires one

value from the worker ,PorP 1j1i11j1i1  worker. In the
th1/2)(p  level the communication between the workers

is done row-wise. After communication between the
workers is completed then each worker ijP computes the

1/2p
ji,v  values. For the th1)(p  sweep each worker i1j1P

requires one value from the 1j1i11j1i1 PorP  worker.

4.1 MPI Communication Service Design

MPI like most other network-oriented middleware services
communicates data from one worker to another across a
network. However, MPI’s higher level of abstraction

provides an easy-to-use interface more appropriate for
distributing parallel computing applications. We focus our
evaluation on [13] because MPI serves as an important
foundation for a large group of applications. Conversely,
MPI provides a wide variety of communication operations
including both blocking and non-blocking sends and
receives and collective operations such as broadcast and
global reductions. We concentrate on basic message
operations: blocking send, blocking receives, non-blocking
send, and non-blocking receive. Note that MPI provides a
rather comprehensive set of messaging operations. A
blocking receives (MPI_Recv) returns when a message that
matches its specification has been copied to the buffer.
However, an alternative to blocking communication
operations MPI provides non-blocking communication to
allow an application to overlap communication and
computation. This overlap improves application
performance. In non-blocking communication, initialization
and completion of communication operations are distinct.
A non-blocking send has both a send start call (MPI_Isend)
initializes the send operation and it return before the
message is copied from the send buffer. The send complete
call (MPI_Wait) completes the non-blocking send by
verifying that the data has been copied from the send
buffer. It is this separation of send start and send complete
that provides the application with the opportunity to
perform computations.

4.2 Speedup, Efficiency and Effectiveness

Speedup and efficiency give a measure of the improvement
of performance experienced by an application when
executed on a parallel system [7]. In traditional parallel
systems it is widely define as:

 N
NSNENT

sTNS)()(,)(
)()( (4.1)

The total efficiency is usually decomposed into the
following equations.

),()()()(NENENENE loadparnum (4.2)

Epar is the parallel efficiency which is defined as the ratio of
CPU time taken on one worker to that on N workers. The
parallel efficiency and the corresponding speedup are
commonly written as follow

N
NSNENT

TNS par
parpar

)()(,)(
)1()( (4.3)

The CPU time for the parallel computations with N workers
can be written as follows:

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 22

)()()()(NTNTNTNT scsdm  (4.4)
generally,

,)1()(),1()(),1()(N
TNTTNTTNT sc

scsdsdmm  (4.5)

therefore, the speedup can be written as:

)1(
)1()1(

/)1()1(
)1()1(

)(
)1()(

ser

scser

scser

scser
par T

TT
NTT

TT
NT

TNS 





 (4.6)

The corresponding efficiency is given by:

(1) (1) (1)()
() (1) (1)

(1) (1)
(1)

T Tser TscEpar N
nT N nTser Tsc

Tser Tsc
nTser


 





 (4.7)

The total efficiency can be decomposed as follows:

1

0 1 1

1 1 1

1

1

(1) (1) (1)()
. () (1) (1)

(1) (1) () ,
(1) () ()

o o o

o o

N N N
s s B

N NN L
B B B B B

N N N
B B B B B B
N N N L

B B B B B B

T T TE N
nT N T T

T T T N
T T N T N



  

  

  

 
 (4.8)

where)(1 nT N
BB has the same meaning as)(1 nT LN

BB except
the idle time is not included. Comparing (6.5) and (6.2), we
obtain:

,
)1(
)1(

)1(
)1(

)1(
)1(

)1(
)1()(

,
)(.

)1()(,)()(

11

1

1

1

1

1

1
N

BB

N
BB

N
BB

N
B

N
B

N
s

N
BB

N
s

N
BB

N
BB

parLN
BB

N
BB

load

T
T

T
T

T
T

T
TNEnum

NTn
TnE

T
NTNE

o

o

o

o

oo























 (4.9)

Therefore,

)1(
)1(,)(1

1
o

o

N
BB

N
B

dd
o

ddnum T
TE

N
N

ENE


 (4.10)

we call (4.10) domain decomposition efficiency (DD),
which includes the increase of CPU time induced by grid
overlap at interfaces and the CPU time variation generated
by DD techniques. Effectiveness is given by:

nnn CSL  (4.11)

where nn nTC  , 1T is the execution time on a serial

machine and nT is the computing time on parallel machine

with N processors. Hence, effectiveness can be written as:

1)(TSETEnTSL nnnnnnn  (4.12)

Table 1 The wall time TW, the master time TM, the worker
data time TSD, the worker computational time TSC, the total
time T, the parallel speed-up Spar and the efficiency Epar for
a mesh of 300x300, with B = 50 blocks and Niter = 100 for

PVM and MPI.

5 Results and Discussion

5.1 Benchmark Problem

The application of the above mentioned algorithms were
compared in terms of performance by simulating their
executions in master-worker paradigm on several sizes. We
assume a platform composed of variable number of
heterogeneous processors. The solution domain was
divided into rectangular blocks. The experiment is
demonstrated on meshes of 200x200 and 300x300 for block
sizes of 100 and 200 respectively, for MPI. Tables 1 - 5
show the various performance timing.

Table 2 The wall time TW, the master time TM, the worker
data time TSD, the worker computational time TSC, the total
time T, the parallel speed-up Spar and the efficiency Epar for
a mesh of 300x300, with B = 100 blocks and Niter = 100

MPI.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 23

Consider the telegraph equation of the form:

U
t

U
t
U

y
U

x
U

















2

2

2

2

2

2

 (5.1)

5.2 Parallel Efficiency

To obtain a high efficiency, the worker computational time
)1(scT should be significantly larger than the serial time

.serT The speed-up and efficiency obtained for various
sizes of 200x200 to 300x300 are for various numbers of
sub-domains; from B = 50 to 200 are listed in Tables 1 – 3
for MPI application. In these tables we listed the wall
(elapsed) time for the master task, ,WT (this is necessarily
greater than the maximum wall time returned by the
slaves), the master CPU time, ,MT the average worker

computational time, SCT and the average worker data

communication time SDT all in seconds. The speed-up and
efficiency versus the number of processors are shown in
Fig.1(a,b) and Fig.2(a,b) respectively, with block number B
as a parameter. The results show that the parallel efficiency

increases with increasing grid size for given block number
for MPI and decreases with the increasing block number for
given grid size. Given other parameters the speed-up
increases with the number of processors. When the number
of processors is small the wall time decreases with the
number of processors. As the number of processors become
large the wall time increases with the number of processors
as observed from the figures and table. Data
communication at the end of every iteration is necessary in
this strategy. Indeed, the updated values of the solution
variables on full domain are multicast to all workers after
each iteration since a worker can be assigned a different
sub-domain under the pool-of-task paradigm. In Tables 1 –
3, the master time MT is constant when the number of
processors increases for a given grid size and number of
sub-domains. The master program is responsible for (1)
sending updated variables to worker (T1), (2) assigning task
to worker (T2), (3) waiting for the worker to execute tasks
(T3), (4) receiving the results (T4).

Table 3 The wall time TW, the master time TM, the worker
data time TSD, the worker computational time TSC, the total
time T, the parallel speed-up Spar and the efficiency Epar for
a mesh of 300x300, with B = 200 blocks and Niter = 100
for MPI.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 24

Table4 Effectiveness of the various schemes with MPI for

300 x 300 mesh size

 N MPI

 T(s)

Ln

 2 816.05 0.118

 8 371.35 0.142

ADI 16 261.35 0.143

 20 217.92 0.165

 30 171.73 0.177

 48

137.65 0.172

 2 992.3 0.098

IADE 8 417.55 0.138

 16 293.22 0.140

 20 250.52 0.154

 30 202.77 0.157

48

161.03 0.155

 2 1329.61 0.074

MF-DS 8 495.18 0.133

 16 357.94 0.128

 20 307.31 0.139

 30 259.00 0.130

48

207.38 0.127

Table5 Performance improvement of different schemes for
300x300 mesh size

N MPI

ADI

IADE

MF-
DS

%

ADI+
IADE

%

IADE+
MF-
DS

2 816.0
5

992.3 1329.6 17.76 25.37

8 371.3
5

417.55 495.18 11.06 15.68

16 261.3
5

293.22 357.94 10.87 18.08

20 217.9
2

250.52 307.31 13.01 18.48

30 171.7
3

202.77 259.00 15.31 21.71

48

137.6
5

161.03 207.38 14.52 22.35

Fig.1 Speed-up versus the number of workers for
various block sizes. a mesh 200x200 MPI, b. mesh

300x300 MPI

 b

Fig.2 Parallel efficiency versus the number of
workers for various block sizes. a mesh 200x200

MPI, b mesh 300x300 MPI

0
20
40
60
80

100

1 4 16 24 38

Sp
ee

du
p

Number of workers

B=200 MF-
DS

B=200 IADE

B=200 ADI

B=100 MF-
DS

0
20
40
60
80

100
120

1 4 16 24 38
Sp

ee
du

p

Number of workers

B=200 MF-DS

B=200 IADE

B=200 ADI

B=100 MF-DS

B=100 IADE

B=100 ADI

B=50 MF-DS

0

2

4

6

8

10

1 4 16 24 38

Ef
fic

ie
nc

y

Number of workers

B=200 MF-
DS

B=200 IADE

B=200 ADI

B=100 MF-
DS

B=100 IADE

0
2
4
6
8

10

1 4 16 24 38

Ef
fic

ie
nc

y

Number of workers

B=200 MF-
DS

B=200 IADE

B=200 ADI

B=100 MF-
DS

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 25

Table 7 shows the effectiveness of the various schemes
with MPI. As the number of processor increases, the
effectiveness of MF-DS scheme performs significantly
better than the ADI. As the total number of processor
increases, the bottleneck of parallel computers appears and
the global reduction consumes a large part of time, we
anticipate that the improvement in Table 5, will move to be
significant. Fig.3 and Fig. 4 show the efficiency using MPI
with varying block sizes, converges using the Iaff measure.

5.3 Numerical Efficiency

The numerical efficiency numE includes the Domain

Decomposition efficiency DDE and convergence rate

behavior 1/ NN o , as defined in Eq. (6.10). The DD

efficiency)1(/)1(1
oo N
BB

N
Bdd TTE  includes the increase

of floating point operations induced by grid overlap at
interfaces and the CPU time variation generated by DD
techniques. In Tables 2 and 3, we listed the total CPU time
distribution over various grid sizes and block numbers
running on different processors for MPI. The DD efficiency
EDD is calculated and the result is shown in Fig3. Note that
the DD efficiency can be greater than one, even with one
processor. Fig.3 and Fig.4 show that the optimum number
of sub-domains, which maximizes the DD efficiency EDD
increases with the grid size. The convergence rate behavior
No / N1, the ratio of the iteration number for the best
sequential CPU time on one processor and the iteration
number for the parallel CPU time on N processor describe
the increase in the number of iterations required by the
parallel method to achieve a specified accuracy as
compared to the serial method. This increase is caused
mainly by the deterioration in the rate of convergence with
increasing number of processors and sub-domains. Because
the best serial algorithm is not known generally, we take
the existing parallel program running on one processor to
replace it. Now the problem is that how the decomposition
strategy affects the convergence rate? The results are
summarized in Table 5 with Fig.5

 It can be seen that No / N1 decreases with increasing block
number and increasing number of processors for given grid
size. The larger the grid size, the higher the convergence
rate. For a given block number, a higher convergence rate
is obtained with less processors. This is because one
processor may be responsible for a few sub-domains at
each iteration. If some of this sub-domains share some
common interfaces, the subsequent blocks to be computed
will use the new updated boundary values, and therefore, an
improved convergence rate results. The convergence rate is
reduced when the block number is large. The reason for this
is evident: the boundary conditions propagate to the interior
domain in the serial computation after one iteration, but this
is delayed in the parallel computation. In addition, the
values of variables at the interfaces used in the current
iteration are the previous values obtained in the last
iteration. Therefore, the parallel algorithm is less “implicit”

than the serial one. Despite these inherent short comes. A
high efficiency is obtained for large scale problems.

Fig.3 The DD efficiency versus the number of sub-domains

for various blocks of MPI

Table6 The number of iteration to achieve given tolerance

of 10-3 for a grid of 300x300 for MPI

Scheme N B=20 B=50 B=100 B=200

 2 1818 3249 3611 1521
 4 1818 3568 3823 1768

ADI 8 1818 3992 4094 1904
 16 1818 4327 4468 2112
 30 1818 4509 4713 2307
 48 1818 4813 4994 2548

IADE 2 2751 3976 4418 2154

 4 2751 4132 4632 2294
 8 2751 4378 4895 2478
 16 2751 4599 5109 2653
 30 2751 4708 5343 2801
 48

2751 4996 5599 2994

 2 3101 4321 4852 3211
MF-DS 4 3101 4582 5074 3528

 8 3101 4718 5362 3769
 16 3101 4992 5621 3928
 30 3101 5284 5895 4325
 48 3101 5476 6122 4518

Fig.4 Convergence behavior with domain decomposition
for mesh 200x200 MF-DS MPI

20 30 50 100 200
0

0.2

0.4

0.6

0.8

1

1.2
200X200 ADI

200X200
IADE

200X200
MF-DS

300X300 ADI

300X300
IADE

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 30 48

B=20

B=50

B=100

B=200

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 26

Fig.5 Convergence behavior with domain
decomposition for mesh 300x300 MF-DS MPI

5.4 Total Efficiency

We implemented the serial computations on one of the
processors, and calculated the total efficiencies. The total
efficiency E(N) for grid sizes 200x200 and 300x300 have
been showed respectively. From Eq. (6.8), we know that
the total efficiency depend on No / N1, parE and DD
efficiency EDD since the load balancing is not the real
problem here. For a given grid size and block number, the
DD efficiency is constant. Thus, the variation of E(N) with
processor number n is governed by parE and 1/ NN o .
When the processor number becomes large, E(N) decreases
with n due to the effect of both the convergence rate and
the parallel efficiency. With the MPI version we were able
to achieve good implementation for the efficiency of
different mesh sizes with different block numbers as
observed in Fig.4 and Fig.5. We observed that the
implementation with MPI achieved conformity to unity

6. CONCLUSION
We have implemented the solution of the IADE-DY
scheme on 2-D Bio-Heat equation on a parallel platform of
MPI/PVM cluster via domain decomposition method. We
have reported a detailed study on the computational
efficiency of a parallel finite difference iterative alternating
direction explicit method under a distributed environment
with PVM and MPI. Computational results obtained have
clearly shown the benefits of using parallel algorithms. We
have come to some conclusions that: (1) the parallel
efficiency is strongly dependent on the problem size, block
numbers and the number of processors as observed in
Figures both for PVM and MPI. (2) A high parallel
efficiency can be obtained with large scale problems. (3)
The decomposition of domain greatly influences the
performance of the parallel computation (Fig. 4 – 5). (4)
The convergence rate depends upon the block numbers and
the number of processors for a given grid. For a given
number of blocks, the convergence rate increases with

decreasing number of processors and for a given number of
processors it decreases with increasing block number for
both MPI and PVM (Fig.6 – 7). On the basis of the current
parallelization strategy, more sophisticated models can be
attacked efficiently.

References

[1.] W. Barry, A. Michael, 2003. Parallel Programming

Techniques and Application using Networked
Workstation and Parallel Computers. Prentice Hall,
New Jersy

[2.] A. Beverly, et al., 2005. The Algorithmic Structure
Design Space in Parallel Programming. Wesley
Professional

[3.] D. Callahan, K. Kennedy. 1988. Compiling Programs
for Distributed Memory Multiprocessors. Journal of
Supercomputer 2, pp 151 – 169

[4.] J.C Chato, 1998. Fundamentals of Bio-Heat Transfer.
Springer-Verlag, Berlin

[5.] H. Chi-Chung, G. Ka-Kaung, et. al., 1994. Solving
Partial Differential Equations on a Network of
Workstations. IEEE, pp 194 – 200.

[6.] M. Chinmay, 2005. Bio-Heat Transfer Modeling.
Infrared Imagine, pp 15 – 31

[7.] R. Chypher, A. Ho, et al., 1993. Architectural
Requirements of Parallel Scientific Applications with
Explicit Communications. Computer Architecture, pp
2 – 13

[8.] P.J Coelho, M.G Carvalho, 1993. Application of a
Domain Decomposition Technique to the
Mathematical Modeling of Utility Boiler. Journal of
Numerical Methods in Eng., 36 pp 3401 – 3419

[9.] D’Ambra P., M. Danelutto, Daniela S., L. Marco,
2002. Advance Environments for Parallel and
Distributed Applications: a view of current status.
Parallel Computing 28, pp 1637 – 1662.

[10.] Z.S Deng, J. Liu, 2002. Analytic Study on Bio-Heat
Transfer Problems with Spatial Heating on Skin
Surface or Inside Biological Bodies. ASME Journal of
Biomechanics Eng., 124 pp 638 – 649

[11.] H.S Dou, Phan-Thien. 1997. A Domain
Decomposition Implementation of the Simple Method
with PVM. Computational Mechanics 20 pp 347 – 358

[12.] F. Durst, M. Perie, D. Chafer, E. Schreck, 1993.
Parallelization of Efficient Numerical Methods for
Flows in Complex Geometries. Flow Simulation with
High Performance Computing I, pp 79 – 92, Vieweg,
Braunschelweig

[13.] Eduardo J.H., Yero M.A, Amaral H. (2007). Speedup
and Scalability Analysis of Master-Slave Applications
on Large Heterogeneous Clusters. Journal of Parallel &
Distributed Computing, Vol. 67 Issue 11, 1155 – 1167.

[14.] Fan C., Jiannong C., Yudong S. 2003. High
Abstractions for Message Passing Parallel
Programming. Parallel Computing 29, 1589 – 1621.

[15.] I. Foster, J. Geist, W. Groop, E. Lust, 1998. Wide-
Area Implementations of the MPI. Parallel Computing
24 pp 1735 – 1749.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 30 48

B=20

B=50

B=100

B=200

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 8, Issue 2, March - April 2019 ISSN 2278-6856

Volume 8, Issue 2, March - April 2019 Page 27

[16.] A. Geist A. Beguelin, J. Dongarra, 1994. Parallel
Virtual Machine (PVM). Cambridge, MIT Press

[17.] G.A Geist, V.M Sunderami, 1992. Network Based
Concurrent Computing on the PVM System.
Concurrency Practice and Experience, pp 293 – 311

[18.] W. Groop, E. Lusk, A. Skjellum, 1999. Using MPI,
Portable and Parallel Programming with the Message
Passing Interface, 2nd Ed., Cambridge MA, MIT Press

[19.] Guang-Wei Y., Long-Jun S., Yu-Lin Z. 2001.
Unconditional Stability of Parallel Alternating
Difference Schemes for Semilinear parabolic Systems.
Applied Mathematics and Computation 117, pp 267 –
283

[20.] M. Gupta, P. Banerjee, 1992a. Demonstration of
Automatic Data Partitioning for Parallelizing
Compilers on Multi-Computers. IEEE Trans. Parallel
Distributed System, 3, vol. 2, pp 179 – 193

[21.] K. Jaris, D.G. Alan, 2003. A High-Performance
Communication Service for Parallel Computing on
Distributed Systems. Parallel Computing 29, pp 851 –
878

[22.] J. Z. Jennifer, et al., 2002. A Two Level Finite
Difference Scheme for 1-D Penne’s Bio-Heat
Equation.

[23.] J. Liu, L.X Xu, 2001. Estimation of Blood Perfusion
Using Phase Shift Temperature Response to Sinusoidal
Heating at Skin Surfaces. IEEE Trans. Biomed. Eng.,
Vol. 46, pp 1037 – 1043

[24.] Mitchell, A.R., Fairweather, G. (1964). Improved
forms of the Alternating direction methods of Douglas,
Peaceman and Rachford for solving parabolic and
elliptic equations, Numer. Maths, 6, 285 – 292.

[25.] J. Noye, 1996. Finite Difference Methods for Partial
Differential Equations. Numerical Solutions of Partial
Differential Equations. North-Hilland Publishing
Company.

[26.] D.W Peaceman, H.H Rachford, 1955. The Numerical
Solution of Parabolic and Elliptic Differential
Equations. Journal of Soc. Indust. Applied Math. 8 (1)
pp 28 – 41

[27.] Peizong L., Z. Kedem, 2002. Automatic Data and
Computation Decomposition on Distributed Memory
Parallel Computers. ACM Transactions on
Programming Languages and Systems, vol. 24, number
1, pp 1 – 50

[28.] H.H Pennes, 1948. Analysis of Tissue and Arterial
Blood Temperature in the Resting Human Forearm.
Journal of Applied Physiol. I, pp 93 – 122

[29.] M.J Quinn, 2001. Parallel Programming in C. MC-
Graw Hill Higher education New York.

[30.] R. Rajamony, A. L. Cox, 1997. Performance
Debugging Shared Memory Parallel Programs Using
Run-Time Dependence Analysis. Performance Review
25 (1), pp 75 – 87

[31.] J. Rantakokko, 2000. Partitioning Strategies for
Structuring Multi Blocks Grids. Parallel Computing 26
pp 166 – 1680

[32.] B. V Rathish Kumar, et al., 2001. A Parallel MIMD
Cell Partitioned ADI Solver for Parabolic Partial

Differential Equations on VPP 700. Parallel
Computing 42, pp 324 – 340

[33.] B. Rubinsky, et al., 1976. Analysis of a Steufen-Like
Problem in a Biological Tissue Around a Cryosurgical
Problem. ASME J. Biomech. Eng., vol. 98, pp 514 –
519

[34.] Sahimi, M.S., Sundararajan, E., Subramaniam, M. and
Hamid, N.A.A. (2001). The D’Yakonov fully explicit
variant of the iterative decomposition method,
International Journal of Computers and Mathematics
with Applications, 42, 1485 – 1496

[35.] V. T Sahni, 1996. Performance Metrics: Keeping the
Focus in Routine. IEEE Parallel and Distributed
Technology, Spring pp 43 – 56.

[36.] G.D Smith, 1985. Numerical Solution of Partial
Differential Equations: Finite Difference Methods 3rd
Ed., Oxford University Press New York.

[37.] M. Snir, S. Otto et. al., 1998. MPI the Complete
Reference, 2nd Ed., Cambridge, MA: MIT Press.

[38.] X.H Sun, J. Gustafson, 1991. Toward a Better Parallel
Performance Metric. Parallel Computing 17.

[39.] M. Tian, D. Yang, 2007. Parallel Finite-Difference
Schemes for Heat Equation based upon Overlapping
Domain Decomposition. Applied Maths and
Computation, 186, pp 1276 – 1292

AUTHOR

Ewedafe Simon Uzezi received the B.Sc. and
M.Sc. degrees in Industrial-Mathematics and
Mathematics from Delta Stae University and The
University of Lagos in 1998 and 2003 respectively.
He further obtained his Ph.D. in Numerical Parallel
Computing 2010 from the Universityof Malaya,

Malaysia. In 2011 he joined UTAR in Malaysia as an Assistant
Professor and later lectured in Oman and Nigeria as Senior
Lecturer in Computing. Currently he is a Senior Lecturer in the
Department of Computing UWI Jamaica.

