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Abstract:  In this paper we present methods that can improve 
numerical parallel implementation using a scalability-related 
measure called input file affinity measure on 2-D Telegraph 
Equation running on a master-worker paradigm. The 
implementation was carried out using Message Passing 
Interface (MPI). The Telegraph Equation was discretized using 
Alternating Direction Implicit (ADI), Iterative Alternating 
Direction Explicit Method by D’Yakonov (IADE-DY) and 
Mitchell-Fairweather Double Sweep Method (MF-DS). Parallel 
performance compare of these methods using the Input File 
Affinity Measure (Iaff) were experimentally evaluated and 
numerical results show their effectiveness and parallel 
performance. We show in this paper that, the input file affinity 
measure has scalability performance with less information to 
schedule tasks. 
Keywords: Parallel Performance, Input File Affinity, 
Master-Worker, 2-D Telegraph Equation, MPI. 

1. INTRODUCTION 
Computing infrastructures are reaching an unprecedented 
degree of complexity. First, parallel processing is coming 
to mainstream, because of the frequency and power 
consumption wall that leads to the design of multi-core 
processors. Second, there is a wide adoption of distributed 
processing technologies because of the deployment of the 
Internet and consequently large-scale grid and cloud 
infrastructures. In master-worker paradigm a master node is 
responsible for scheduling computation among the worker 
and collecting the results [5]. The master-worker paradigm 
has fundamental limitations: both communications from the 
master and contention in accessing file repositories may 
become bottlenecks to the overall scheduling scheme, 
causing scalability problems. Parallelization of Partial 
Differential Equations (PDEs) by time decomposition was 
first proposed by [22] following earlier efforts at space-
time methods [15, 16, 30]. The application of the 
alternating iterative methods to solve problem of 2-D 
telegraph equations have shown that they need high 
computational power and communications. In the world of 
parallel computing MPI is the de facto standard for 
implementing programs on multiprocessors. To help with 
program development under a distributed computing 
environment a number of software tools have been 

developed MPI [13] is chosen here since it has a large user 
group.  
An alternative and cost effective means of achieving a 
comparable performance is by way of distributed 
computing, using a system of processors loosely connected 
through a Local Area Network (LAN). Relevant data need 
to be passed from processor to processor through a message 
passing mechanism [12, 18, 27]. The telegraph equation is 
important for modeling several relevant problems such as 
wave propagation [24], and others. In this paper, a number 
of iterative methods are developed to solve the telegraph 
equations [8]. Some of these iterative schemes are 
employed in various parallel platforms [15, 16, 30]. Parallel 
algorithms have been implemented for the finite difference 
method [9, 10, 8], the discrete eigen functions method used 
in [1] and [27] used the AGE method on 1-D telegraph 
problem, but not implemented on parallel platform for 
parallel improvement. We present in this paper algorithms 
which have scalability performance comparable to other 
algorithms in several circumstances. We describe the 
design of our parallel system through Iaff for understanding 
parallel execution. Through several implementations and 
performance improvement analysis of the alternating 
iterative methods, we explore how to use the Iaff on master-
slave paradigm for identifying parallel performance on 2-D 
telegraph equation. We assume the amount of work is 
increased exclusively by increasing the number of tasks. 
The reason for this is that it is relatively easy to increase the 
range of parameters to be analyzed in an application. On 
the order hand, in order to increase the amount of work 
related to each individual task, the input data for that task 
should be changed, which may change the nature of the 
problem to be processed by those tasks and it is not always 
feasible.  
It is worth noting that some of the related works mentioned 
focus on the problem of efficient scheduling of the 
decomposition to execute on distributed architectures 
organized either as pure master-slave or hierarchical 
platforms, while lacking scalability analysis. We consider 
that the amount of computation associated with each task is 
fixed, each task depends on one or more input files for 
execution, and input file can be shared among tasks [14]. In 
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this work we assume that both the size of the input files, the 
dependencies among input files and tasks are known. We 
also consider that the master node has access to a storage 
system which serves as the repository of all input and 
output files. This paper is organized as follows: Section 2 
discusses previous research work. Section 2 presents the 
model for the 2-D telegraph equation and introduces the 
IADE-DY and DS-MF scheme. Section 3 describes the 
input file affinity measure. Section 4 describes the parallel 
implementation of the algorithms. Section 5 presents the 
numerical and experimental result of the schemes under 
consideration. Finally, section 6 presents our conclusions.   
 
1.1 Previous research work 
Parallel performance of algorithms has been studied in 
several papers during the last years [7]. Bag of Task (BoT) 
applications composed of independent tasks with file 
sharing have appeared in papers [8, 14, 19]. Their relevance 
has motivated the development of specialized environments 
which aim to facilitate the execution of large BoT 
applications on computational grids and clusters, such as 
the AppLes Parameter-Sweep Template (APST) [4]. 
Giersch et al., [14] proved theoretical limits for the 
computational complexity associated to the scheduling 
problem. In [19], they proposed an iterative scheduling 
approach that produces effective and efficient schedules, 
compared to the previous works in [5, 14]. However, for 
homogeneous platforms, the algorithms proposed in [19] 
can be considerably simplified, in a way that it becomes 
equivalent to algorithms proposed previously. Fabricio [11] 
analyzes the scalability of BoT applications running on 
master-slave platforms and proposed a scalability related 
measure. Eric [2] presents a detailed study on the 
scheduling of tasks in the parareal algorithm. It proposes 
two algorithms, one which uses a manager-worker 
paradigm with overlap of sequential and parallel phases, 
and a second that is completely distributed. Hinde et al. 
[17], proposed a generic approach to embed the master-
worker paradigm into software component models and 
describes how this generic approach can be implemented 
within an existing software component model. On the 
numerical computing part, [29] went in search of numerical 
consistency in parallel programming and presented 
methods that can drastically improve numerical consistency 
for parallel calculations across varying numbers of 
processors. In [9, 10], parallel implementation of 2-D 
telegraph equation using the SPMD technique and domain 
decomposition strategy have been researched and they 
presented a model that enhances overlap communication 
with computation to avoid unnecessary synchronization, 
thus yield significant speed up. On the parallel computing 
front, [28], has proposed a parallel ADI solver for linear 
array of processors. The ADI method in [23, 26] have been 
used for solving heat equations in 2D. Approach to solve 
the telegraphic equations using different numerical schemes 
has been treated in [8].  

2. TELEGRAPH EQUATION 
We consider the second order telegraph equation as given 
in [8]:            

   
2 2 2

2 2 2 0 1,0 1, 0v v v va b x y t
t t x y
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            

       (2.1) 

extending the finite difference scheme on the telegraph 
equation of (3.1) becomes: 
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Although this simple implicit scheme is unconditionally 
stable, we need to solve a penta-diagonal system of 
algebraic equations at each time step. Therefore, the 
computational time is huge.    
 
2.1 The 2-D ADI Method 
 
In this section, we derive the 2-D ADI scheme of the 
simple implicit FDTD method by using a general ADI 
procedure extended to (2.1). Equation (2.4) can be rewritten 
as: 
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sub-iteration 1 is given by: 
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For various values of i and j , (2.4) can be written in a more 
compact matrix form at the (k + ½ ) time level as: 
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sub-iteration 2 is given by: 
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For various values of i and j , (2.6) can be written in a more 
compact matrix form as: 
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this is a prediction of 1
,
n
i jv  by the extrapolation method. 

Splitting by using an ADI procedure, we get a set of 
recursion relations as follows: 
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where 1(1)
,
n
i jv  is the intermediate solution and the desired 

solution is 1 1(2)
, ,
n n
i j i jv v  . Finally, expanding A1 and A2 on 

the left side of (2.8) and (2.9), we get the 2D ADI 
algorithm.  
 
2.2   IADE-DY 

The matrices derived from the discretization resulting to A 
(2.5) and B (2.7) is respectively tridiagonal of size (mxm) 
and (nxn). Hence, at each of the (k + ½) and (k + 1) time 
levels, these matrices can be decomposed into 
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upper bidiagonal matrices. By carrying out the relevant 
multiplications, the following equations for computation at 
each of the intermediate levels are obtained: 
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 (ii) at the ( 1)thp  iterate, 
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The two-stage iterative procedure in the IADE-DY 
algorithm corresponds to sweeping through the mesh 

involving at each iterates the solution of an explicit 
equation.  

 
2.3   DS-MF 

The numerical representative of Eq. (2.8) and (2.9) using 
the Mitchell and Fairweather scheme is as follows: 
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The horizontal sweep (2.12) and the vertical sweep (2.13) 
formulas can be manipulated and written in a compact 
matrix.   

3 THE IAFF 
With reference to [11], we introduce the Iaff. First, we 
describe a simplified execution model that classifies several 
issues related with the execution of the telegraphic equation 
on the master-worker paradigm. Typically, each task goes 
through three phrases during execution of a parameter-
sweep application: (1) an initialization phase, where the 
necessary files are sent from the master to the slave node 
and the task is started. The duration of this phase is equal to 
tinit. Note that this phase includes the overhead incurred by 
the master to initiate a data transfer to a slave, (2) a 
computational phase, where the task processes the 
parameter file at the slave node and produces an output file. 
The duration of this phase is equal to tcomp. Any additional 
overhead related to the reception of input files by a worker 
node is also included in this phase and (3) a completion 
phase, where the output file is sent back to the master and 
the master task is completed. The duration of this phase is 
equal to tend. This phase may require some processing at the 
master, mainly related to writing out files to the repository. 
Since this writing may be deferred until the disk is 
available, we assume that this processing time is negligible. 
Therefore, the initialization phase of one slave can occur 
concurrently with the completion phase of another slave 
node. Given these three phases, the total execution time of 
a task is equal to  

            endcompinittotal tttt                               (3.1) 
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as the machine model, we consider a cluster composed of P 
+ 1 processors. For the rest of this paper we assume that T 
» P. One processor is the master and the other processors 
are workers. Communication among master and workers is 
carried out through Ethernet and master can only send files 
through the network to a single worker at a given time. We 
assume the communication link is full-duplex, i.e., the 
master can receive an output file from a worker at the same 
time it sends an input file to another worker. We also 
assume that communication computation begins as soon as 
the input files are completely received. This assumption is 
coherent to the master-worker paradigm that is currently 
available in [14].  

For the sake of simplicity and without loss of generality, we 
consider in this section that there is no contention related to 
the transmission of output files from worker nodes to the 
master. Indeed, it is possible to merge the computation 
phase with the completion phase without affecting the 
results of this section. Therefore, we merge both phases as 

'
compt in the equations that follow. A worker is idle when it 

is not involved with the execution of any of the three 
phases of a task. For the results below, the task model is 
composed of T heterogeneous tasks. All tasks and files 
have the same size and each task depends upon a single 
non-shared file. Note that the problem of scheduling an 
application where each task depends upon a single non-
shared file, all tasks and files have the same size and the 
master-worker paradigm is heterogeneous, has polynomial 
complexity [14]. These assumptions are considered in the 
analysis that follows. We define the effective number of 
processors effP as the maximum number of workers needed 
to run an application with no idle periods on any worker 
processor. Taking into account the task and platform 
models described in this section, a processor may have idle 
periods if: 

               init
'
comp 1)t(Pt                                       (3.2) 

effP is then given by the following equation: 
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the total number of tasks to be executed on a processor is at 
most 
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P
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for a platform with effP processors, the upper bound for the 
total execution time (makespan) will be  
           init

'
compinitmakespan 1)t(P)tM(tt     (3.5) 

the second term in the right hand side of Eq. (3.5) shows 
the time needed to start the first (P – 1) tasks in the other P 
– 1 processors. If we have a platform where the number of 
processors is larger than effP the overall makespan is 
dominated by communication times between the master and 
the workers. We then have: 

                  '
compinitmakespan tMPtt                      (3.6) 

the set of Eqs. (3.2) – (3.6) will be considered in 
subsequent sections of this paper. It is worth noting that Eq. 
(3.5) is valid when workers are constantly busy, either 
performing computation or 

communication. Eq. (3.6) is applicable when workers have 
idle periods, i.e., are not performing either computation or 
communication. Eq. (3.2) occurs mainly in two cases: 
 

(1) For very large platforms (P large). 

(2) For applications with small 
init

comp

t
t

ratio, such as 

fine-grain applications. 
In order to measure the degree of affinity of a set of tasks 
concerning their input files, we introduce the concept of 
input file affinity. Given a set of G of tasks, composed of K 
tasks,  k21 T,,T,TG  , and the set F of the Y input 
files needed by the tasks belonging to group G, 

 y21 f,,f,fF  , we define affI as follows: 

                






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 y

1i ii
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1i i
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fN

f1)(N
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where if is the size in bytes of file if  and 

K)N(1N ii  is the number of tasks in group G which 

have file if as an input file. The term 1)(N i  in the 
numerator of the above equation can be explained as 
follows: if iN tasks share an input file if , that file may be 

sent only once (instead of iN times) when the group of 
tasks is executed on a worker node. The potential reduction 
of the number of bytes transferred from a master node to a 
worker node considering only input file if is then

ii f1)(N  . Therefore, the input file affinity indicates the 
overall reduction of the amount of data that needs to be 
transferred to a worker node, when all tasks of a group are 
sent to one node. Note that 1I0 aff  . For the special 

case where all tasks share the same input file
k

1kIaff


 , 

where k is the number of tasks of a group.  
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4 PARALLEL IMPLEMENTATION 

The implementation is done on Geranium Cadcam Cluster 
consisting of 48 Intel Pentium at 1.73GHZ and 0.99GB 
RAM. Communication is through a fast Ethernet of 100 
MBits per seconds connected and running Linux. The 
cluster performance has high memory bandwidth with a 
message passing supported by MPI [13]. The program 
written in C provided access to MPI through calling MPI 
library routines.  At each time-step we have to evaluate 

1nv  values at lm'' grid points, where l'' is the number of 
grid points along x-axis. Suppose we are implementing this 
method on SR   mesh connected computer. Denote the 
workers by  

MSandS,2,1,j1l,RandR,2,1,i1:P j1i1,  

. The workers ,Pi1j1 are connected as shown in Fig.4. Let 


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R
1L1 and 


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S
MM1  where  is the smallest 

integer part. Divide the lm'' grid points into RS'' groups 
so that each group contains at most 1)1)(M(L 11  grid 

points and at least 11ML grid points. Denote these groups 
by 
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Assign the group ,G i1j1 to the workers 

S.,2,1,jFor,R,,2,1,i:P 11j1i1,   Each 

worker computes its assigned group 1n
ji,v  values in the 

required number of sweeps. At the th1/2)(p  sweep the 

workers compute 1/2)th(p
ji,v   values of its assigned groups. 

For the th1/2)(p  level the worker i1j1P  requires one 

value from the worker ,PorP 1j1i11j1i1  worker. In the 
th1/2)(p  level the communication between the workers 

is done row-wise. After communication between the 
workers is completed then each worker ijP computes the 

1/2p
ji,v  values. For the th1)(p  sweep each worker i1j1P  

requires one value from the 1j1i11j1i1 PorP   worker.  
 
4.1 MPI Communication Service Design 

MPI like most other network-oriented middleware services 
communicates data from one worker to another across a 
network. However, MPI’s higher level of abstraction 

provides an easy-to-use interface more appropriate for 
distributing parallel computing applications. We focus our 
evaluation on [13] because MPI serves as an important 
foundation for a large group of applications. Conversely, 
MPI provides a wide variety of communication operations 
including both blocking and non-blocking sends and 
receives and collective operations such as broadcast and 
global reductions. We concentrate on basic message 
operations: blocking send, blocking receives, non-blocking 
send, and non-blocking receive. Note that MPI provides a 
rather comprehensive set of messaging operations. A 
blocking receives (MPI_Recv) returns when a message that 
matches its specification has been copied to the buffer. 
However, an alternative to blocking communication 
operations MPI provides non-blocking communication to 
allow an application to overlap communication and 
computation. This overlap improves application 
performance. In non-blocking communication, initialization 
and completion of communication operations are distinct. 
A non-blocking send has both a send start call (MPI_Isend) 
initializes the send operation and it return before the 
message is copied from the send buffer. The send complete 
call (MPI_Wait) completes the non-blocking send by 
verifying that the data has been copied from the send 
buffer. It is this separation of send start and send complete 
that provides the application with the opportunity to 
perform computations.  

4.2 Speedup, Efficiency and Effectiveness 

Speedup and efficiency give a measure of the improvement 
of performance experienced by an application when 
executed on a parallel system [7]. In traditional parallel 
systems it is widely define as: 

      N
NSNENT

sTNS )()(,)(
)()(               (4.1) 

The total efficiency is usually decomposed into the 
following equations. 

          ),()()()( NENENENE loadparnum          (4.2)  

Epar is the parallel efficiency which is defined as the ratio of 
CPU time taken on one worker to that on N workers. The 
parallel efficiency and the corresponding speedup are 
commonly written as follow 

                      

N
NSNENT

TNS par
parpar

)()(,)(
)1()(             (4.3) 

The CPU time for the parallel computations with N workers 
can be written as follows: 
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         )()()()( NTNTNTNT scsdm               (4.4) 
generally,                    

,)1()(),1()(),1()( N
TNTTNTTNT sc

scsdsdmm          (4.5) 

therefore, the speedup can be written as: 

)1(
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ser

scser

scser

scser
par T

TT
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


        (4.6) 

The corresponding efficiency is given by: 

  

(1) (1) (1)( )
( ) (1) (1)

(1) (1)
(1)

T Tser TscEpar N
nT N nTser Tsc

Tser Tsc
nTser


 





        (4.7) 

The total efficiency can be decomposed as follows: 

   
1
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where )(1 nT N
BB has the same meaning as )(1 nT LN

BB except 
the idle time is not included. Comparing (6.5) and (6.2), we 
obtain:             
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 (4.9) 

 
Therefore,  

  
)1(
)1(,)( 1

1
o

o

N
BB

N
B

dd
o

ddnum T
TE

N
N

ENE


             (4.10) 

we call (4.10) domain decomposition efficiency (DD), 
which includes the increase of CPU time induced by grid 
overlap at interfaces and the CPU time variation generated 
by DD techniques. Effectiveness is given by: 

 

nnn CSL                                                    (4.11) 
 

where nn nTC  , 1T is the execution time on a serial 

machine and nT  is the computing time on parallel machine 

with N processors. Hence, effectiveness can be written as: 

1)( TSETEnTSL nnnnnnn         (4.12) 

Table 1 The wall time TW, the master time TM, the worker 
data time TSD, the worker computational time TSC, the total 
time T, the parallel speed-up Spar and the efficiency Epar for 
a mesh of 300x300, with B = 50 blocks and Niter = 100 for 

PVM and MPI. 
 

 
                                                                                                      
 
5 Results and Discussion 

5.1 Benchmark Problem 

The application of the above mentioned algorithms were 
compared in terms of performance by simulating their 
executions in master-worker paradigm on several sizes. We 
assume a platform composed of variable number of 
heterogeneous processors. The solution domain was 
divided into rectangular blocks. The experiment is 
demonstrated on meshes of 200x200 and 300x300 for block 
sizes of 100 and 200 respectively, for MPI. Tables 1 - 5 
show the various performance timing.  

Table 2 The wall time TW, the master time TM, the worker 
data time TSD, the worker computational time TSC, the total 
time T, the parallel speed-up Spar and the efficiency Epar for 
a mesh of 300x300, with B = 100 blocks and Niter = 100 

MPI. 
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Consider the telegraph equation of the form: 
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                      (5.1) 

 
5.2 Parallel Efficiency 

To obtain a high efficiency, the worker computational time 
)1(scT should be significantly larger than the serial time 

.serT  The speed-up and efficiency obtained for various 
sizes of 200x200 to 300x300 are for various numbers of 
sub-domains; from B = 50 to 200 are listed in Tables 1 – 3 
for MPI application. In these tables we listed the wall 
(elapsed) time for the master task, ,WT  (this is necessarily 
greater than the maximum wall time returned by the 
slaves), the master CPU time, ,MT  the average worker 

computational time, SCT  and the average worker data 

communication time SDT all in seconds. The speed-up and 
efficiency versus the number of processors are shown in 
Fig.1(a,b) and Fig.2(a,b) respectively, with block number B 
as a parameter. The results show that the parallel efficiency 

increases with increasing grid size for given block number 
for MPI and decreases with the increasing block number for 
given grid size. Given other parameters the speed-up 
increases with the number of processors. When the number 
of processors is small the wall time decreases with the 
number of processors. As the number of processors become 
large the wall time increases with the number of processors 
as observed from the figures and table. Data 
communication at the end of every iteration is necessary in 
this strategy. Indeed, the updated values of the solution 
variables on full domain are multicast to all workers after 
each iteration since a worker can be assigned a different 
sub-domain under the pool-of-task paradigm. In Tables 1 – 
3, the master time MT is constant when the number of 
processors increases for a given grid size and number of 
sub-domains. The master program is responsible for (1) 
sending updated variables to worker (T1), (2) assigning task 
to worker (T2), (3) waiting for the worker to execute tasks 
(T3), (4) receiving the results (T4).  

Table 3 The wall time TW, the master time TM, the worker 
data time TSD, the worker computational time TSC, the total 
time T, the parallel speed-up Spar and the efficiency Epar for 
a mesh of 300x300, with B = 200 blocks and Niter = 100 
for MPI. 
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Table4 Effectiveness of the various schemes with MPI for 

300 x 300 mesh size 
 

 
 N MPI 

 T(s) 
 

Ln 

 

 
 2 816.05 0.118 

 8 371.35 0.142 

ADI 16 261.35 0.143 

 20 217.92 0.165 

 30 171.73 0.177 

 48 
 

137.65 0.172 

 2 992.3 0.098 

IADE 8 417.55 0.138 

 16 293.22 0.140 

 20 250.52 0.154 

 30 202.77 0.157 

 
 

48 
 

161.03 0.155 

 2 1329.61 0.074 

MF-DS 8 495.18 0.133 

 16 357.94 0.128 

 20 307.31 0.139 

 30 259.00 0.130 

 

 

48 

 

207.38 0.127 

Table5 Performance improvement of different schemes for 
300x300 mesh size 

 

N  MPI 
 
 
ADI 

 
 
 
IADE 

 
 
 
MF-
DS 

% 
 
ADI+ 
IADE 

% 
 
IADE+
MF-
DS 
 
 

2 816.0
5 

992.3 1329.6 17.76 25.37 

8 371.3
5 

417.55 495.18 11.06 15.68 

16 261.3
5 

293.22 357.94 10.87 18.08 

20 217.9
2 

250.52 307.31 13.01 18.48 

30 171.7
3 

202.77 259.00 15.31 21.71 

48 
 

137.6
5 

161.03 207.38 14.52 22.35 

      

                                       

 
                                                                                     

Fig.1 Speed-up versus the number of workers for 
various block sizes. a  mesh 200x200 MPI, b. mesh 

300x300 MPI 
 

                      

 
                                                    b 

Fig.2 Parallel efficiency versus the number of 
workers for various block sizes. a mesh 200x200 

MPI, b mesh 300x300 MPI 
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Table 7 shows the effectiveness of the various schemes 
with MPI. As the number of processor increases, the 
effectiveness of MF-DS scheme performs significantly 
better than the ADI. As the total number of processor 
increases, the bottleneck of parallel computers appears and 
the global reduction consumes a large part of time, we 
anticipate that the improvement in Table 5, will move to be 
significant. Fig.3 and Fig. 4 show the efficiency using MPI 
with varying block sizes, converges using the Iaff measure.  

5.3 Numerical Efficiency 

The numerical efficiency numE  includes the Domain 

Decomposition efficiency DDE  and convergence rate 

behavior 1/ NN o , as defined in Eq. (6.10). The DD 

efficiency )1(/)1(1
oo N
BB

N
Bdd TTE   includes the increase 

of floating point operations induced by grid overlap at 
interfaces and the CPU time variation generated by DD 
techniques. In Tables 2 and 3, we listed the total CPU time 
distribution over various grid sizes and block numbers 
running on different processors for MPI. The DD efficiency 
EDD is calculated and the result is shown in Fig3. Note that 
the DD efficiency can be greater than one, even with one 
processor. Fig.3 and Fig.4 show that the optimum number 
of sub-domains, which maximizes the DD efficiency EDD 
increases with the grid size. The convergence rate behavior 
No / N1, the ratio of the iteration number for the best 
sequential CPU time on one processor and the iteration 
number for the parallel CPU time on N processor describe 
the increase in the number of iterations required by the 
parallel method to achieve a specified accuracy as 
compared to the serial method. This increase is caused 
mainly by the deterioration in the rate of convergence with 
increasing number of processors and sub-domains. Because 
the best serial algorithm is not known generally, we take 
the existing parallel program running on one processor to 
replace it. Now the problem is that how the decomposition 
strategy affects the convergence rate? The results are 
summarized in Table 5 with Fig.5  

 It can be seen that No / N1 decreases with increasing block 
number and increasing number of processors for given grid 
size. The larger the grid size, the higher the convergence 
rate. For a given block number, a higher convergence rate 
is obtained with less processors. This is because one 
processor may be responsible for a few sub-domains at 
each iteration. If some of this sub-domains share some 
common interfaces, the subsequent blocks to be computed 
will use the new updated boundary values, and therefore, an 
improved convergence rate results. The convergence rate is 
reduced when the block number is large. The reason for this 
is evident: the boundary conditions propagate to the interior 
domain in the serial computation after one iteration, but this 
is delayed in the parallel computation. In addition, the 
values of variables at the interfaces used in the current 
iteration are the previous values obtained in the last 
iteration. Therefore, the parallel algorithm is less “implicit” 

than the serial one. Despite these inherent short comes. A 
high efficiency is obtained for large scale problems.       

 
Fig.3 The DD efficiency versus the number of sub-domains 

for various blocks of MPI 
 
Table6 The number of iteration to achieve given tolerance 

of 10-3 for a grid of 300x300 for MPI 

 

Scheme N B=20 B=50 B=100 B=200 
 

 2 1818 3249 3611 1521 
 4 1818 3568 3823 1768 

ADI 8 1818 3992 4094 1904 
 16 1818 4327 4468 2112 
 30 1818 4509 4713 2307 
 48 1818 4813 4994 2548 

 
IADE 2 2751 3976 4418 2154 

 4 2751 4132 4632 2294 
 8 2751 4378 4895 2478 
 16 2751 4599 5109 2653 
 30 2751 4708 5343 2801 
 48 

 
2751 4996 5599 2994 

 2 3101 4321 4852 3211 
MF-DS 4 3101 4582 5074 3528 

 8 3101 4718 5362 3769 
 16 3101 4992 5621 3928 
 30 3101 5284 5895 4325 
 48 3101 5476 6122 4518 

 
                

 
 

Fig.4 Convergence behavior with domain decomposition 
for mesh 200x200 MF-DS MPI 
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Fig.5 Convergence behavior with domain 
decomposition for mesh 300x300 MF-DS MPI 

 
 
 

5.4 Total Efficiency 

We implemented the serial computations on one of the 
processors, and calculated the total efficiencies. The total 
efficiency E(N) for grid sizes 200x200 and 300x300  have 
been showed respectively. From Eq. (6.8), we know that 
the total efficiency depend on No / N1,  parE  and DD 
efficiency EDD since the load balancing is not the real 
problem here. For a given grid size and block number, the 
DD efficiency is constant. Thus, the variation of E(N) with 
processor number n is governed by parE and 1/ NN o . 
When the processor number becomes large, E(N) decreases 
with n due to the effect of both the convergence rate and 
the parallel efficiency. With the MPI version we were able 
to achieve good implementation for the efficiency of 
different mesh sizes with different block numbers as 
observed in Fig.4 and Fig.5. We observed that the 
implementation with MPI achieved conformity to unity   

 
6. CONCLUSION 
We have implemented the solution of the IADE-DY 
scheme on 2-D Bio-Heat equation on a parallel platform of 
MPI/PVM cluster via domain decomposition method. We 
have reported a detailed study on the computational 
efficiency of a parallel finite difference iterative alternating 
direction explicit method under a distributed environment 
with PVM and MPI. Computational results obtained have 
clearly shown the benefits of using parallel algorithms. We 
have come to some conclusions that: (1) the parallel 
efficiency is strongly dependent on the problem size, block 
numbers and the number of processors as observed in 
Figures both for PVM and MPI. (2) A high parallel 
efficiency can be obtained with large scale problems. (3) 
The decomposition of domain greatly influences the 
performance of the parallel computation (Fig. 4 – 5). (4) 
The convergence rate depends upon the block numbers and 
the number of processors for a given grid. For a given 
number of blocks, the convergence rate increases with 

decreasing number of processors and for a given number of 
processors it decreases with increasing block number for 
both MPI and PVM (Fig.6 – 7). On the basis of the current 
parallelization strategy, more sophisticated models can be 
attacked efficiently.  
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